E8 geometry

Abstract: We investigate exceptional generalised diffeomorphisms based on E8(8) in a geometric setting. The transformations include gauge transformations for the dual gravity field. The surprising key result, which allows for a development of a tensor formalism, is that it is possible to define fiel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cederwall, M., Rosabal, J.A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_11266708_v2015_n7_p1_Cederwall
Aporte de:
id todo:paper_11266708_v2015_n7_p1_Cederwall
record_format dspace
spelling todo:paper_11266708_v2015_n7_p1_Cederwall2023-10-03T16:07:22Z E8 geometry Cederwall, M. Rosabal, J.A. M-Theory Space-Time Symmetries Abstract: We investigate exceptional generalised diffeomorphisms based on E8(8) in a geometric setting. The transformations include gauge transformations for the dual gravity field. The surprising key result, which allows for a development of a tensor formalism, is that it is possible to define field-dependent transformations containing connection, which are covariant. We solve for the spin connection and construct a curvature tensor. A geometry for the Ehlers symmetry SL(n + 1) is sketched. Some related issues are discussed. © 2015, The Author(s). JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_11266708_v2015_n7_p1_Cederwall
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic M-Theory
Space-Time Symmetries
spellingShingle M-Theory
Space-Time Symmetries
Cederwall, M.
Rosabal, J.A.
E8 geometry
topic_facet M-Theory
Space-Time Symmetries
description Abstract: We investigate exceptional generalised diffeomorphisms based on E8(8) in a geometric setting. The transformations include gauge transformations for the dual gravity field. The surprising key result, which allows for a development of a tensor formalism, is that it is possible to define field-dependent transformations containing connection, which are covariant. We solve for the spin connection and construct a curvature tensor. A geometry for the Ehlers symmetry SL(n + 1) is sketched. Some related issues are discussed. © 2015, The Author(s).
format JOUR
author Cederwall, M.
Rosabal, J.A.
author_facet Cederwall, M.
Rosabal, J.A.
author_sort Cederwall, M.
title E8 geometry
title_short E8 geometry
title_full E8 geometry
title_fullStr E8 geometry
title_full_unstemmed E8 geometry
title_sort e8 geometry
url http://hdl.handle.net/20.500.12110/paper_11266708_v2015_n7_p1_Cederwall
work_keys_str_mv AT cederwallm e8geometry
AT rosabalja e8geometry
_version_ 1807322478149632000