E8 geometry
Abstract: We investigate exceptional generalised diffeomorphisms based on E8(8) in a geometric setting. The transformations include gauge transformations for the dual gravity field. The surprising key result, which allows for a development of a tensor formalism, is that it is possible to define fiel...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_11266708_v2015_n7_p1_Cederwall |
Aporte de: |
id |
todo:paper_11266708_v2015_n7_p1_Cederwall |
---|---|
record_format |
dspace |
spelling |
todo:paper_11266708_v2015_n7_p1_Cederwall2023-10-03T16:07:22Z E8 geometry Cederwall, M. Rosabal, J.A. M-Theory Space-Time Symmetries Abstract: We investigate exceptional generalised diffeomorphisms based on E8(8) in a geometric setting. The transformations include gauge transformations for the dual gravity field. The surprising key result, which allows for a development of a tensor formalism, is that it is possible to define field-dependent transformations containing connection, which are covariant. We solve for the spin connection and construct a curvature tensor. A geometry for the Ehlers symmetry SL(n + 1) is sketched. Some related issues are discussed. © 2015, The Author(s). JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_11266708_v2015_n7_p1_Cederwall |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
M-Theory Space-Time Symmetries |
spellingShingle |
M-Theory Space-Time Symmetries Cederwall, M. Rosabal, J.A. E8 geometry |
topic_facet |
M-Theory Space-Time Symmetries |
description |
Abstract: We investigate exceptional generalised diffeomorphisms based on E8(8) in a geometric setting. The transformations include gauge transformations for the dual gravity field. The surprising key result, which allows for a development of a tensor formalism, is that it is possible to define field-dependent transformations containing connection, which are covariant. We solve for the spin connection and construct a curvature tensor. A geometry for the Ehlers symmetry SL(n + 1) is sketched. Some related issues are discussed. © 2015, The Author(s). |
format |
JOUR |
author |
Cederwall, M. Rosabal, J.A. |
author_facet |
Cederwall, M. Rosabal, J.A. |
author_sort |
Cederwall, M. |
title |
E8 geometry |
title_short |
E8 geometry |
title_full |
E8 geometry |
title_fullStr |
E8 geometry |
title_full_unstemmed |
E8 geometry |
title_sort |
e8 geometry |
url |
http://hdl.handle.net/20.500.12110/paper_11266708_v2015_n7_p1_Cederwall |
work_keys_str_mv |
AT cederwallm e8geometry AT rosabalja e8geometry |
_version_ |
1807322478149632000 |