Eigenvalues homogenization for the fractional p-laplacian

In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered. © 2016 Texas St...

Descripción completa

Detalles Bibliográficos
Autor principal: Salort, A.M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10726691_v2016_n_p_Salort
Aporte de:
id todo:paper_10726691_v2016_n_p_Salort
record_format dspace
spelling todo:paper_10726691_v2016_n_p_Salort2023-10-03T16:02:50Z Eigenvalues homogenization for the fractional p-laplacian Salort, A.M. Eigenvalue homogenization Fractional p-Laplacian Nonlinear eigenvalues Order of convergence In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered. © 2016 Texas State University. Fil:Salort, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10726691_v2016_n_p_Salort
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Eigenvalue homogenization
Fractional p-Laplacian
Nonlinear eigenvalues
Order of convergence
spellingShingle Eigenvalue homogenization
Fractional p-Laplacian
Nonlinear eigenvalues
Order of convergence
Salort, A.M.
Eigenvalues homogenization for the fractional p-laplacian
topic_facet Eigenvalue homogenization
Fractional p-Laplacian
Nonlinear eigenvalues
Order of convergence
description In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered. © 2016 Texas State University.
format JOUR
author Salort, A.M.
author_facet Salort, A.M.
author_sort Salort, A.M.
title Eigenvalues homogenization for the fractional p-laplacian
title_short Eigenvalues homogenization for the fractional p-laplacian
title_full Eigenvalues homogenization for the fractional p-laplacian
title_fullStr Eigenvalues homogenization for the fractional p-laplacian
title_full_unstemmed Eigenvalues homogenization for the fractional p-laplacian
title_sort eigenvalues homogenization for the fractional p-laplacian
url http://hdl.handle.net/20.500.12110/paper_10726691_v2016_n_p_Salort
work_keys_str_mv AT salortam eigenvalueshomogenizationforthefractionalplaplacian
_version_ 1807316363103961088