Eigenvalues homogenization for the fractional p-laplacian
In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered. © 2016 Texas St...
Autor principal: | |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10726691_v2016_n_p_Salort |
Aporte de: |
id |
todo:paper_10726691_v2016_n_p_Salort |
---|---|
record_format |
dspace |
spelling |
todo:paper_10726691_v2016_n_p_Salort2023-10-03T16:02:50Z Eigenvalues homogenization for the fractional p-laplacian Salort, A.M. Eigenvalue homogenization Fractional p-Laplacian Nonlinear eigenvalues Order of convergence In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered. © 2016 Texas State University. Fil:Salort, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10726691_v2016_n_p_Salort |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Eigenvalue homogenization Fractional p-Laplacian Nonlinear eigenvalues Order of convergence |
spellingShingle |
Eigenvalue homogenization Fractional p-Laplacian Nonlinear eigenvalues Order of convergence Salort, A.M. Eigenvalues homogenization for the fractional p-laplacian |
topic_facet |
Eigenvalue homogenization Fractional p-Laplacian Nonlinear eigenvalues Order of convergence |
description |
In this work we study the homogenization for eigenvalues of the fractional p-Laplace operator in a bounded domain both with Dirichlet and Neumann conditions. We obtain the convergence of eigenvalues and the explicit order of the convergence rates when periodic weights are considered. © 2016 Texas State University. |
format |
JOUR |
author |
Salort, A.M. |
author_facet |
Salort, A.M. |
author_sort |
Salort, A.M. |
title |
Eigenvalues homogenization for the fractional p-laplacian |
title_short |
Eigenvalues homogenization for the fractional p-laplacian |
title_full |
Eigenvalues homogenization for the fractional p-laplacian |
title_fullStr |
Eigenvalues homogenization for the fractional p-laplacian |
title_full_unstemmed |
Eigenvalues homogenization for the fractional p-laplacian |
title_sort |
eigenvalues homogenization for the fractional p-laplacian |
url |
http://hdl.handle.net/20.500.12110/paper_10726691_v2016_n_p_Salort |
work_keys_str_mv |
AT salortam eigenvalueshomogenizationforthefractionalplaplacian |
_version_ |
1807316363103961088 |