Surface shape resonances and surface plasmon polariton excitations in bottle-shaped metallic gratings

We study surface plasmon polariton excitations and surface shape resonances in a lossy metallic grating with bivalued cavities. The modal formalism is used to solve the diffraction problem for the infinite grating and the homogeneous problem for a single cavity in a plane surface. Both polarization...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Skigin, D.C., Depine, R.A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_1063651X_v63_n4_p_Skigin
Aporte de:
Descripción
Sumario:We study surface plasmon polariton excitations and surface shape resonances in a lossy metallic grating with bivalued cavities. The modal formalism is used to solve the diffraction problem for the infinite grating and the homogeneous problem for a single cavity in a plane surface. Both polarization modes are considered. We provide curves of reflected efficiency versus wavelength as well as near-field plots. The resonances are identified as dips in the reflected efficiency, which imply significant power absorptions. Results for various depths of the cavities and for several angles of incidence are shown, where the different types of resonant behavior can be appreciated. Particular attention is paid to the changes introduced by the finite conductivity of the metal in relation to the results obtained for a perfect conductor. © 2001 The American Physical Society.