Global stability of stationary patterns in bistable reaction-diffusion systems

We study a piecewise linear version of a one-component, one-dimensional reaction-diffusion bistable model, with the aim of analyzing the effect of boundary conditions on the formation and stability of stationary patterns. The analysis proceeds through the study of the behavior of the Lyapunov functi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Izús, G., Deza, R., Ramírez, O., Wio, H.S., Zanette, D.H., Borzi, C.
Formato: JOUR
Lenguaje:English
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_1063651X_v52_n1_p129_Izus
Aporte de:
id todo:paper_1063651X_v52_n1_p129_Izus
record_format dspace
spelling todo:paper_1063651X_v52_n1_p129_Izus2023-10-03T16:01:14Z Global stability of stationary patterns in bistable reaction-diffusion systems Izús, G. Deza, R. Ramírez, O. Wio, H.S. Zanette, D.H. Borzi, C. We study a piecewise linear version of a one-component, one-dimensional reaction-diffusion bistable model, with the aim of analyzing the effect of boundary conditions on the formation and stability of stationary patterns. The analysis proceeds through the study of the behavior of the Lyapunov functional in terms of a control parameter: the reflectivity at the boundary. We show that, in this example, this functional has a very simple and direct geometrical interpretation. © 1995 The American Physical Society. JOUR English info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_1063651X_v52_n1_p129_Izus
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
language English
orig_language_str_mv English
description We study a piecewise linear version of a one-component, one-dimensional reaction-diffusion bistable model, with the aim of analyzing the effect of boundary conditions on the formation and stability of stationary patterns. The analysis proceeds through the study of the behavior of the Lyapunov functional in terms of a control parameter: the reflectivity at the boundary. We show that, in this example, this functional has a very simple and direct geometrical interpretation. © 1995 The American Physical Society.
format JOUR
author Izús, G.
Deza, R.
Ramírez, O.
Wio, H.S.
Zanette, D.H.
Borzi, C.
spellingShingle Izús, G.
Deza, R.
Ramírez, O.
Wio, H.S.
Zanette, D.H.
Borzi, C.
Global stability of stationary patterns in bistable reaction-diffusion systems
author_facet Izús, G.
Deza, R.
Ramírez, O.
Wio, H.S.
Zanette, D.H.
Borzi, C.
author_sort Izús, G.
title Global stability of stationary patterns in bistable reaction-diffusion systems
title_short Global stability of stationary patterns in bistable reaction-diffusion systems
title_full Global stability of stationary patterns in bistable reaction-diffusion systems
title_fullStr Global stability of stationary patterns in bistable reaction-diffusion systems
title_full_unstemmed Global stability of stationary patterns in bistable reaction-diffusion systems
title_sort global stability of stationary patterns in bistable reaction-diffusion systems
url http://hdl.handle.net/20.500.12110/paper_1063651X_v52_n1_p129_Izus
work_keys_str_mv AT izusg globalstabilityofstationarypatternsinbistablereactiondiffusionsystems
AT dezar globalstabilityofstationarypatternsinbistablereactiondiffusionsystems
AT ramirezo globalstabilityofstationarypatternsinbistablereactiondiffusionsystems
AT wiohs globalstabilityofstationarypatternsinbistablereactiondiffusionsystems
AT zanettedh globalstabilityofstationarypatternsinbistablereactiondiffusionsystems
AT borzic globalstabilityofstationarypatternsinbistablereactiondiffusionsystems
_version_ 1807322059414437888