Progress toward scalable tomography of quantum maps using twirling-based methods and information hierarchies

We present in a unified manner the existing methods for scalable partial quantum process tomography. We focus on two main approaches: the one presented in Bendersky [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.190403 100, 190403 (2008)] and the ones described, respectively, in Emerson [Sc...

Descripción completa

Detalles Bibliográficos
Autores principales: López, C.C., Bendersky, A., Paz, J.P., Cory, D.G.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10502947_v81_n6_p_Lopez
Aporte de:
id todo:paper_10502947_v81_n6_p_Lopez
record_format dspace
spelling todo:paper_10502947_v81_n6_p_Lopez2023-10-03T16:00:05Z Progress toward scalable tomography of quantum maps using twirling-based methods and information hierarchies López, C.C. Bendersky, A. Paz, J.P. Cory, D.G. Comparative analysis Emerson Existing method Matrix representation Quantum maps Quantum process Quantum process tomography Scalable methods Useful properties Scalability Tomography We present in a unified manner the existing methods for scalable partial quantum process tomography. We focus on two main approaches: the one presented in Bendersky [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.190403 100, 190403 (2008)] and the ones described, respectively, in Emerson [ScienceSCIEAS0036-807510.1126/science.1145699 317, 1893 (2007)] and López [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.79.042328 79, 042328 (2009)], which can be combined together. The methods share an essential feature: They are based on the idea that the tomography of a quantum map can be efficiently performed by studying certain properties of a twirling of such a map. From this perspective, in this paper we present extensions, improvements, and comparative analyses of the scalable methods for partial quantum process tomography. We also clarify the significance of the extracted information, and we introduce interesting and useful properties of the χ-matrix representation of quantum maps that can be used to establish a clearer path toward achieving full tomography of quantum processes in a scalable way. © 2010 The American Physical Society. Fil:López, C.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Bendersky, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Paz, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10502947_v81_n6_p_Lopez
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Comparative analysis
Emerson
Existing method
Matrix representation
Quantum maps
Quantum process
Quantum process tomography
Scalable methods
Useful properties
Scalability
Tomography
spellingShingle Comparative analysis
Emerson
Existing method
Matrix representation
Quantum maps
Quantum process
Quantum process tomography
Scalable methods
Useful properties
Scalability
Tomography
López, C.C.
Bendersky, A.
Paz, J.P.
Cory, D.G.
Progress toward scalable tomography of quantum maps using twirling-based methods and information hierarchies
topic_facet Comparative analysis
Emerson
Existing method
Matrix representation
Quantum maps
Quantum process
Quantum process tomography
Scalable methods
Useful properties
Scalability
Tomography
description We present in a unified manner the existing methods for scalable partial quantum process tomography. We focus on two main approaches: the one presented in Bendersky [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.100.190403 100, 190403 (2008)] and the ones described, respectively, in Emerson [ScienceSCIEAS0036-807510.1126/science.1145699 317, 1893 (2007)] and López [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.79.042328 79, 042328 (2009)], which can be combined together. The methods share an essential feature: They are based on the idea that the tomography of a quantum map can be efficiently performed by studying certain properties of a twirling of such a map. From this perspective, in this paper we present extensions, improvements, and comparative analyses of the scalable methods for partial quantum process tomography. We also clarify the significance of the extracted information, and we introduce interesting and useful properties of the χ-matrix representation of quantum maps that can be used to establish a clearer path toward achieving full tomography of quantum processes in a scalable way. © 2010 The American Physical Society.
format JOUR
author López, C.C.
Bendersky, A.
Paz, J.P.
Cory, D.G.
author_facet López, C.C.
Bendersky, A.
Paz, J.P.
Cory, D.G.
author_sort López, C.C.
title Progress toward scalable tomography of quantum maps using twirling-based methods and information hierarchies
title_short Progress toward scalable tomography of quantum maps using twirling-based methods and information hierarchies
title_full Progress toward scalable tomography of quantum maps using twirling-based methods and information hierarchies
title_fullStr Progress toward scalable tomography of quantum maps using twirling-based methods and information hierarchies
title_full_unstemmed Progress toward scalable tomography of quantum maps using twirling-based methods and information hierarchies
title_sort progress toward scalable tomography of quantum maps using twirling-based methods and information hierarchies
url http://hdl.handle.net/20.500.12110/paper_10502947_v81_n6_p_Lopez
work_keys_str_mv AT lopezcc progresstowardscalabletomographyofquantummapsusingtwirlingbasedmethodsandinformationhierarchies
AT benderskya progresstowardscalabletomographyofquantummapsusingtwirlingbasedmethodsandinformationhierarchies
AT pazjp progresstowardscalabletomographyofquantummapsusingtwirlingbasedmethodsandinformationhierarchies
AT corydg progresstowardscalabletomographyofquantummapsusingtwirlingbasedmethodsandinformationhierarchies
_version_ 1807320797326344192