Stationary rings of vortices in nonrotating Bose-Einstein condensates

We numerically obtain stationary rings of vortices in pancake-shaped Bose-Einstein condensates confined in a three-dimensional nonrotating trap. For this purpose we use a static axisymmetric trapping potential that can sustain locally stable off-axis vortices. We analyze the maximum number of vortic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jezek, D.M., Capuzzi, P., Guilleumas, M., Mayol, R.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_10502947_v78_n5_p_Jezek
Aporte de:
id todo:paper_10502947_v78_n5_p_Jezek
record_format dspace
spelling todo:paper_10502947_v78_n5_p_Jezek2023-10-03T15:59:59Z Stationary rings of vortices in nonrotating Bose-Einstein condensates Jezek, D.M. Capuzzi, P. Guilleumas, M. Mayol, R. Bose-Einstein condensation Steam condensers Three dimensional Velocity Analytical expressions Approximated expressions Axisymmetric Einstein condensates Inhomogeneous medias One hands Single vortices Stationary conditions Trapping potentials Velocity fields Vortex dynamics Vortex positions Vortex flow We numerically obtain stationary rings of vortices in pancake-shaped Bose-Einstein condensates confined in a three-dimensional nonrotating trap. For this purpose we use a static axisymmetric trapping potential that can sustain locally stable off-axis vortices. We analyze the maximum number of vortices the system can host as a function of the number of particles. We also show that this system provides a very suitable scenario for predicting vortex dynamics in inhomogeneous media. Specifically, on the one hand, we derive an exact and simple analytical expression for the velocity field in a particular vortex position due to the presence of the other vortices of the array. On the other hand, using the fact that in stationary conditions this field should balance all other contributions to the velocity, we investigate the applicability of approximated expressions for the precession velocity obtained in previous works for condensates with a single vortex. © 2008 The American Physical Society. Fil:Jezek, D.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Capuzzi, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10502947_v78_n5_p_Jezek
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Bose-Einstein condensation
Steam condensers
Three dimensional
Velocity
Analytical expressions
Approximated expressions
Axisymmetric
Einstein condensates
Inhomogeneous medias
One hands
Single vortices
Stationary conditions
Trapping potentials
Velocity fields
Vortex dynamics
Vortex positions
Vortex flow
spellingShingle Bose-Einstein condensation
Steam condensers
Three dimensional
Velocity
Analytical expressions
Approximated expressions
Axisymmetric
Einstein condensates
Inhomogeneous medias
One hands
Single vortices
Stationary conditions
Trapping potentials
Velocity fields
Vortex dynamics
Vortex positions
Vortex flow
Jezek, D.M.
Capuzzi, P.
Guilleumas, M.
Mayol, R.
Stationary rings of vortices in nonrotating Bose-Einstein condensates
topic_facet Bose-Einstein condensation
Steam condensers
Three dimensional
Velocity
Analytical expressions
Approximated expressions
Axisymmetric
Einstein condensates
Inhomogeneous medias
One hands
Single vortices
Stationary conditions
Trapping potentials
Velocity fields
Vortex dynamics
Vortex positions
Vortex flow
description We numerically obtain stationary rings of vortices in pancake-shaped Bose-Einstein condensates confined in a three-dimensional nonrotating trap. For this purpose we use a static axisymmetric trapping potential that can sustain locally stable off-axis vortices. We analyze the maximum number of vortices the system can host as a function of the number of particles. We also show that this system provides a very suitable scenario for predicting vortex dynamics in inhomogeneous media. Specifically, on the one hand, we derive an exact and simple analytical expression for the velocity field in a particular vortex position due to the presence of the other vortices of the array. On the other hand, using the fact that in stationary conditions this field should balance all other contributions to the velocity, we investigate the applicability of approximated expressions for the precession velocity obtained in previous works for condensates with a single vortex. © 2008 The American Physical Society.
format JOUR
author Jezek, D.M.
Capuzzi, P.
Guilleumas, M.
Mayol, R.
author_facet Jezek, D.M.
Capuzzi, P.
Guilleumas, M.
Mayol, R.
author_sort Jezek, D.M.
title Stationary rings of vortices in nonrotating Bose-Einstein condensates
title_short Stationary rings of vortices in nonrotating Bose-Einstein condensates
title_full Stationary rings of vortices in nonrotating Bose-Einstein condensates
title_fullStr Stationary rings of vortices in nonrotating Bose-Einstein condensates
title_full_unstemmed Stationary rings of vortices in nonrotating Bose-Einstein condensates
title_sort stationary rings of vortices in nonrotating bose-einstein condensates
url http://hdl.handle.net/20.500.12110/paper_10502947_v78_n5_p_Jezek
work_keys_str_mv AT jezekdm stationaryringsofvorticesinnonrotatingboseeinsteincondensates
AT capuzzip stationaryringsofvorticesinnonrotatingboseeinsteincondensates
AT guilleumasm stationaryringsofvorticesinnonrotatingboseeinsteincondensates
AT mayolr stationaryringsofvorticesinnonrotatingboseeinsteincondensates
_version_ 1807320534588850176