Stationary rings of vortices in nonrotating Bose-Einstein condensates
We numerically obtain stationary rings of vortices in pancake-shaped Bose-Einstein condensates confined in a three-dimensional nonrotating trap. For this purpose we use a static axisymmetric trapping potential that can sustain locally stable off-axis vortices. We analyze the maximum number of vortic...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_10502947_v78_n5_p_Jezek |
Aporte de: |
id |
todo:paper_10502947_v78_n5_p_Jezek |
---|---|
record_format |
dspace |
spelling |
todo:paper_10502947_v78_n5_p_Jezek2023-10-03T15:59:59Z Stationary rings of vortices in nonrotating Bose-Einstein condensates Jezek, D.M. Capuzzi, P. Guilleumas, M. Mayol, R. Bose-Einstein condensation Steam condensers Three dimensional Velocity Analytical expressions Approximated expressions Axisymmetric Einstein condensates Inhomogeneous medias One hands Single vortices Stationary conditions Trapping potentials Velocity fields Vortex dynamics Vortex positions Vortex flow We numerically obtain stationary rings of vortices in pancake-shaped Bose-Einstein condensates confined in a three-dimensional nonrotating trap. For this purpose we use a static axisymmetric trapping potential that can sustain locally stable off-axis vortices. We analyze the maximum number of vortices the system can host as a function of the number of particles. We also show that this system provides a very suitable scenario for predicting vortex dynamics in inhomogeneous media. Specifically, on the one hand, we derive an exact and simple analytical expression for the velocity field in a particular vortex position due to the presence of the other vortices of the array. On the other hand, using the fact that in stationary conditions this field should balance all other contributions to the velocity, we investigate the applicability of approximated expressions for the precession velocity obtained in previous works for condensates with a single vortex. © 2008 The American Physical Society. Fil:Jezek, D.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Capuzzi, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_10502947_v78_n5_p_Jezek |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Bose-Einstein condensation Steam condensers Three dimensional Velocity Analytical expressions Approximated expressions Axisymmetric Einstein condensates Inhomogeneous medias One hands Single vortices Stationary conditions Trapping potentials Velocity fields Vortex dynamics Vortex positions Vortex flow |
spellingShingle |
Bose-Einstein condensation Steam condensers Three dimensional Velocity Analytical expressions Approximated expressions Axisymmetric Einstein condensates Inhomogeneous medias One hands Single vortices Stationary conditions Trapping potentials Velocity fields Vortex dynamics Vortex positions Vortex flow Jezek, D.M. Capuzzi, P. Guilleumas, M. Mayol, R. Stationary rings of vortices in nonrotating Bose-Einstein condensates |
topic_facet |
Bose-Einstein condensation Steam condensers Three dimensional Velocity Analytical expressions Approximated expressions Axisymmetric Einstein condensates Inhomogeneous medias One hands Single vortices Stationary conditions Trapping potentials Velocity fields Vortex dynamics Vortex positions Vortex flow |
description |
We numerically obtain stationary rings of vortices in pancake-shaped Bose-Einstein condensates confined in a three-dimensional nonrotating trap. For this purpose we use a static axisymmetric trapping potential that can sustain locally stable off-axis vortices. We analyze the maximum number of vortices the system can host as a function of the number of particles. We also show that this system provides a very suitable scenario for predicting vortex dynamics in inhomogeneous media. Specifically, on the one hand, we derive an exact and simple analytical expression for the velocity field in a particular vortex position due to the presence of the other vortices of the array. On the other hand, using the fact that in stationary conditions this field should balance all other contributions to the velocity, we investigate the applicability of approximated expressions for the precession velocity obtained in previous works for condensates with a single vortex. © 2008 The American Physical Society. |
format |
JOUR |
author |
Jezek, D.M. Capuzzi, P. Guilleumas, M. Mayol, R. |
author_facet |
Jezek, D.M. Capuzzi, P. Guilleumas, M. Mayol, R. |
author_sort |
Jezek, D.M. |
title |
Stationary rings of vortices in nonrotating Bose-Einstein condensates |
title_short |
Stationary rings of vortices in nonrotating Bose-Einstein condensates |
title_full |
Stationary rings of vortices in nonrotating Bose-Einstein condensates |
title_fullStr |
Stationary rings of vortices in nonrotating Bose-Einstein condensates |
title_full_unstemmed |
Stationary rings of vortices in nonrotating Bose-Einstein condensates |
title_sort |
stationary rings of vortices in nonrotating bose-einstein condensates |
url |
http://hdl.handle.net/20.500.12110/paper_10502947_v78_n5_p_Jezek |
work_keys_str_mv |
AT jezekdm stationaryringsofvorticesinnonrotatingboseeinsteincondensates AT capuzzip stationaryringsofvorticesinnonrotatingboseeinsteincondensates AT guilleumasm stationaryringsofvorticesinnonrotatingboseeinsteincondensates AT mayolr stationaryringsofvorticesinnonrotatingboseeinsteincondensates |
_version_ |
1807320534588850176 |