Navier-Stokes solutions for steady parallel-sided pendent rivulets

We investigate exact solutions of the NavierStokes equations for steady rectilinear pendent rivulets running under inclined surfaces. First we show how to find exact solutions for sessile or hanging rivulets for any profile of the substrate (transversally to the direction of flow) and with no restri...

Descripción completa

Detalles Bibliográficos
Autores principales: Tanasijczuk, A.J., Perazzo, C.A., Gratton, J.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_09977546_v29_n6_p465_Tanasijczuk
Aporte de:
id todo:paper_09977546_v29_n6_p465_Tanasijczuk
record_format dspace
spelling todo:paper_09977546_v29_n6_p465_Tanasijczuk2023-10-03T15:55:45Z Navier-Stokes solutions for steady parallel-sided pendent rivulets Tanasijczuk, A.J. Perazzo, C.A. Gratton, J. NavierStokes equations Parallel flow Pendent rivulet Contact lines Exact solution Free surfaces Global properties Inclined planes Inclined surface Navier Stokes Parallel flows Pendent rivulet Solid surface Static equilibrium Systematic study Velocity field Contact angle Poisson equation Surface tension Parallel flow We investigate exact solutions of the NavierStokes equations for steady rectilinear pendent rivulets running under inclined surfaces. First we show how to find exact solutions for sessile or hanging rivulets for any profile of the substrate (transversally to the direction of flow) and with no restrictions on the contact angles. The free surface is a cylindrical meniscus whose shape is determined by the static equilibrium between gravity and surface tension, by the shape of the solid surface, and by the contact angles on both contact lines. Given this, the velocity field can be obtained by integrating numerically a Poisson equation. We then perform a systematic study of rivulets hanging below an inclined plane, computing some of their global properties, and discussing their stability. © 2010 Elsevier Masson SAS. All rights reserved. Fil:Tanasijczuk, A.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Perazzo, C.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Gratton, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_09977546_v29_n6_p465_Tanasijczuk
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic NavierStokes equations
Parallel flow
Pendent rivulet
Contact lines
Exact solution
Free surfaces
Global properties
Inclined planes
Inclined surface
Navier Stokes
Parallel flows
Pendent rivulet
Solid surface
Static equilibrium
Systematic study
Velocity field
Contact angle
Poisson equation
Surface tension
Parallel flow
spellingShingle NavierStokes equations
Parallel flow
Pendent rivulet
Contact lines
Exact solution
Free surfaces
Global properties
Inclined planes
Inclined surface
Navier Stokes
Parallel flows
Pendent rivulet
Solid surface
Static equilibrium
Systematic study
Velocity field
Contact angle
Poisson equation
Surface tension
Parallel flow
Tanasijczuk, A.J.
Perazzo, C.A.
Gratton, J.
Navier-Stokes solutions for steady parallel-sided pendent rivulets
topic_facet NavierStokes equations
Parallel flow
Pendent rivulet
Contact lines
Exact solution
Free surfaces
Global properties
Inclined planes
Inclined surface
Navier Stokes
Parallel flows
Pendent rivulet
Solid surface
Static equilibrium
Systematic study
Velocity field
Contact angle
Poisson equation
Surface tension
Parallel flow
description We investigate exact solutions of the NavierStokes equations for steady rectilinear pendent rivulets running under inclined surfaces. First we show how to find exact solutions for sessile or hanging rivulets for any profile of the substrate (transversally to the direction of flow) and with no restrictions on the contact angles. The free surface is a cylindrical meniscus whose shape is determined by the static equilibrium between gravity and surface tension, by the shape of the solid surface, and by the contact angles on both contact lines. Given this, the velocity field can be obtained by integrating numerically a Poisson equation. We then perform a systematic study of rivulets hanging below an inclined plane, computing some of their global properties, and discussing their stability. © 2010 Elsevier Masson SAS. All rights reserved.
format JOUR
author Tanasijczuk, A.J.
Perazzo, C.A.
Gratton, J.
author_facet Tanasijczuk, A.J.
Perazzo, C.A.
Gratton, J.
author_sort Tanasijczuk, A.J.
title Navier-Stokes solutions for steady parallel-sided pendent rivulets
title_short Navier-Stokes solutions for steady parallel-sided pendent rivulets
title_full Navier-Stokes solutions for steady parallel-sided pendent rivulets
title_fullStr Navier-Stokes solutions for steady parallel-sided pendent rivulets
title_full_unstemmed Navier-Stokes solutions for steady parallel-sided pendent rivulets
title_sort navier-stokes solutions for steady parallel-sided pendent rivulets
url http://hdl.handle.net/20.500.12110/paper_09977546_v29_n6_p465_Tanasijczuk
work_keys_str_mv AT tanasijczukaj navierstokessolutionsforsteadyparallelsidedpendentrivulets
AT perazzoca navierstokessolutionsforsteadyparallelsidedpendentrivulets
AT grattonj navierstokessolutionsforsteadyparallelsidedpendentrivulets
_version_ 1807320982636986368