Stationary arrays of vortices in Bose-Einstein condensates confined by a toroidal trap

We numerically study metastable arrays of vortices in three-dimensional Bose-Einstein condensates by solving the Gross-Pitaevskii equation with initial imprinted vorticity. We consider condensates confined by a harmonic plus Gaussian potential such as that used in a recent experiment. We analyse the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Capuzzi, P., Jezek, D.M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_09534075_v42_n14_p_Capuzzi
Aporte de:
id todo:paper_09534075_v42_n14_p_Capuzzi
record_format dspace
spelling todo:paper_09534075_v42_n14_p_Capuzzi2023-10-03T15:51:02Z Stationary arrays of vortices in Bose-Einstein condensates confined by a toroidal trap Capuzzi, P. Jezek, D.M. Bose-Einstein condensates Gaussians Gross-Pitaevskii equation Quantized vortex Spatial distribution Spatial in-homogeneity Stationary configurations Three-dimensional Bose-Einstein condensate Toroidal trap Trap parameters Velocity field Winding number Bose-Einstein condensation Statistical mechanics Steam condensers Size distribution We numerically study metastable arrays of vortices in three-dimensional Bose-Einstein condensates by solving the Gross-Pitaevskii equation with initial imprinted vorticity. We consider condensates confined by a harmonic plus Gaussian potential such as that used in a recent experiment. We analyse the energy barrier that prevents the vortices from leaving the trap and the spatial distribution of vortices for different trap parameters and winding numbers. For configurations forming rings of vortices we interpret the results in terms of the velocity fields produced by the vortices themselves and the spatial inhomogeneity of the condensate. For low enough densities, we found stationary configurations of multiply quantized vortices. © 2009 IOP Publishing Ltd. Fil:Capuzzi, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Jezek, D.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_09534075_v42_n14_p_Capuzzi
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Bose-Einstein condensates
Gaussians
Gross-Pitaevskii equation
Quantized vortex
Spatial distribution
Spatial in-homogeneity
Stationary configurations
Three-dimensional Bose-Einstein condensate
Toroidal trap
Trap parameters
Velocity field
Winding number
Bose-Einstein condensation
Statistical mechanics
Steam condensers
Size distribution
spellingShingle Bose-Einstein condensates
Gaussians
Gross-Pitaevskii equation
Quantized vortex
Spatial distribution
Spatial in-homogeneity
Stationary configurations
Three-dimensional Bose-Einstein condensate
Toroidal trap
Trap parameters
Velocity field
Winding number
Bose-Einstein condensation
Statistical mechanics
Steam condensers
Size distribution
Capuzzi, P.
Jezek, D.M.
Stationary arrays of vortices in Bose-Einstein condensates confined by a toroidal trap
topic_facet Bose-Einstein condensates
Gaussians
Gross-Pitaevskii equation
Quantized vortex
Spatial distribution
Spatial in-homogeneity
Stationary configurations
Three-dimensional Bose-Einstein condensate
Toroidal trap
Trap parameters
Velocity field
Winding number
Bose-Einstein condensation
Statistical mechanics
Steam condensers
Size distribution
description We numerically study metastable arrays of vortices in three-dimensional Bose-Einstein condensates by solving the Gross-Pitaevskii equation with initial imprinted vorticity. We consider condensates confined by a harmonic plus Gaussian potential such as that used in a recent experiment. We analyse the energy barrier that prevents the vortices from leaving the trap and the spatial distribution of vortices for different trap parameters and winding numbers. For configurations forming rings of vortices we interpret the results in terms of the velocity fields produced by the vortices themselves and the spatial inhomogeneity of the condensate. For low enough densities, we found stationary configurations of multiply quantized vortices. © 2009 IOP Publishing Ltd.
format JOUR
author Capuzzi, P.
Jezek, D.M.
author_facet Capuzzi, P.
Jezek, D.M.
author_sort Capuzzi, P.
title Stationary arrays of vortices in Bose-Einstein condensates confined by a toroidal trap
title_short Stationary arrays of vortices in Bose-Einstein condensates confined by a toroidal trap
title_full Stationary arrays of vortices in Bose-Einstein condensates confined by a toroidal trap
title_fullStr Stationary arrays of vortices in Bose-Einstein condensates confined by a toroidal trap
title_full_unstemmed Stationary arrays of vortices in Bose-Einstein condensates confined by a toroidal trap
title_sort stationary arrays of vortices in bose-einstein condensates confined by a toroidal trap
url http://hdl.handle.net/20.500.12110/paper_09534075_v42_n14_p_Capuzzi
work_keys_str_mv AT capuzzip stationaryarraysofvorticesinboseeinsteincondensatesconfinedbyatoroidaltrap
AT jezekdm stationaryarraysofvorticesinboseeinsteincondensatesconfinedbyatoroidaltrap
_version_ 1807316358689456128