Vortex pinning vs superconducting wire network: Origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets
Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetical...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_09532048_v27_n6_p_Gomez |
Aporte de: |
id |
todo:paper_09532048_v27_n6_p_Gomez |
---|---|
record_format |
dspace |
spelling |
todo:paper_09532048_v27_n6_p_Gomez2023-10-03T15:50:49Z Vortex pinning vs superconducting wire network: Origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets Gomez, A. Del Valle, J. Gonzalez, E.M. Chiliotte, C.E. Carreira, S.J. Bekeris, V. Prieto, J.L. Schuller, I.K. Vicent, J.L. Little-Parks effect nanoestructures vortex pinning Embedded systems Magnetization Superconducting films Wire Applied magnetic fields Broad temperature ranges Little-Parks effects nanoestructures Superconducting properties Temperature intervals Vortex pinning Wide temperature ranges Vortex flow Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility χac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behaviour is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished. © 2014 IOP Publishing Ltd. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_09532048_v27_n6_p_Gomez |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Little-Parks effect nanoestructures vortex pinning Embedded systems Magnetization Superconducting films Wire Applied magnetic fields Broad temperature ranges Little-Parks effects nanoestructures Superconducting properties Temperature intervals Vortex pinning Wide temperature ranges Vortex flow |
spellingShingle |
Little-Parks effect nanoestructures vortex pinning Embedded systems Magnetization Superconducting films Wire Applied magnetic fields Broad temperature ranges Little-Parks effects nanoestructures Superconducting properties Temperature intervals Vortex pinning Wide temperature ranges Vortex flow Gomez, A. Del Valle, J. Gonzalez, E.M. Chiliotte, C.E. Carreira, S.J. Bekeris, V. Prieto, J.L. Schuller, I.K. Vicent, J.L. Vortex pinning vs superconducting wire network: Origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets |
topic_facet |
Little-Parks effect nanoestructures vortex pinning Embedded systems Magnetization Superconducting films Wire Applied magnetic fields Broad temperature ranges Little-Parks effects nanoestructures Superconducting properties Temperature intervals Vortex pinning Wide temperature ranges Vortex flow |
description |
Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current Ic(H), magnetization M(H) and ac-susceptibility χac(H) in a broad temperature range. Due to the coherence length divergence at Tc, a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to Tc, wire network behaviour is only present in a very narrow temperature window close to Tc. In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished. © 2014 IOP Publishing Ltd. |
format |
JOUR |
author |
Gomez, A. Del Valle, J. Gonzalez, E.M. Chiliotte, C.E. Carreira, S.J. Bekeris, V. Prieto, J.L. Schuller, I.K. Vicent, J.L. |
author_facet |
Gomez, A. Del Valle, J. Gonzalez, E.M. Chiliotte, C.E. Carreira, S.J. Bekeris, V. Prieto, J.L. Schuller, I.K. Vicent, J.L. |
author_sort |
Gomez, A. |
title |
Vortex pinning vs superconducting wire network: Origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets |
title_short |
Vortex pinning vs superconducting wire network: Origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets |
title_full |
Vortex pinning vs superconducting wire network: Origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets |
title_fullStr |
Vortex pinning vs superconducting wire network: Origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets |
title_full_unstemmed |
Vortex pinning vs superconducting wire network: Origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets |
title_sort |
vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets |
url |
http://hdl.handle.net/20.500.12110/paper_09532048_v27_n6_p_Gomez |
work_keys_str_mv |
AT gomeza vortexpinningvssuperconductingwirenetworkoriginofperiodicoscillationsinducedbyappliedmagneticfieldsinsuperconductingfilmswitharraysofnanomagnets AT delvallej vortexpinningvssuperconductingwirenetworkoriginofperiodicoscillationsinducedbyappliedmagneticfieldsinsuperconductingfilmswitharraysofnanomagnets AT gonzalezem vortexpinningvssuperconductingwirenetworkoriginofperiodicoscillationsinducedbyappliedmagneticfieldsinsuperconductingfilmswitharraysofnanomagnets AT chiliottece vortexpinningvssuperconductingwirenetworkoriginofperiodicoscillationsinducedbyappliedmagneticfieldsinsuperconductingfilmswitharraysofnanomagnets AT carreirasj vortexpinningvssuperconductingwirenetworkoriginofperiodicoscillationsinducedbyappliedmagneticfieldsinsuperconductingfilmswitharraysofnanomagnets AT bekerisv vortexpinningvssuperconductingwirenetworkoriginofperiodicoscillationsinducedbyappliedmagneticfieldsinsuperconductingfilmswitharraysofnanomagnets AT prietojl vortexpinningvssuperconductingwirenetworkoriginofperiodicoscillationsinducedbyappliedmagneticfieldsinsuperconductingfilmswitharraysofnanomagnets AT schullerik vortexpinningvssuperconductingwirenetworkoriginofperiodicoscillationsinducedbyappliedmagneticfieldsinsuperconductingfilmswitharraysofnanomagnets AT vicentjl vortexpinningvssuperconductingwirenetworkoriginofperiodicoscillationsinducedbyappliedmagneticfieldsinsuperconductingfilmswitharraysofnanomagnets |
_version_ |
1807320137173303296 |