Asymptotic behaviour for a semilinear nonlocal equation
We study the semilinear nonlocal equation u t =Ju-u-u p in the whole. First, we prove the global well-posedness for initial conditions. Next, we obtain the long time behaviour of the solutions. We show that different behaviours are possible depending on the exponent p and the kernel J: finite time e...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_09217134_v52_n1-2_p143_Pazoto |
Aporte de: |
id |
todo:paper_09217134_v52_n1-2_p143_Pazoto |
---|---|
record_format |
dspace |
spelling |
todo:paper_09217134_v52_n1-2_p143_Pazoto2023-10-03T15:45:39Z Asymptotic behaviour for a semilinear nonlocal equation Pazoto, A.F. Rossi, J.D. Asymptotic behaviour Nonlocal diffusion Semilinear problems Approximation theory Finite element method Linear equations Asymptotic behavior Nonlocal diffusion Semilinear problems Asymptotic analysis We study the semilinear nonlocal equation u t =Ju-u-u p in the whole. First, we prove the global well-posedness for initial conditions. Next, we obtain the long time behaviour of the solutions. We show that different behaviours are possible depending on the exponent p and the kernel J: finite time extinction for p<1, faster than exponential decay for the linear case p=1, a weakly nonlinear behaviour for p large enough and a decay governed by the nonlinear term when p is greater than one but not so large. © 2007 - IOS Press and the authors. All rights reserved. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_09217134_v52_n1-2_p143_Pazoto |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Asymptotic behaviour Nonlocal diffusion Semilinear problems Approximation theory Finite element method Linear equations Asymptotic behavior Nonlocal diffusion Semilinear problems Asymptotic analysis |
spellingShingle |
Asymptotic behaviour Nonlocal diffusion Semilinear problems Approximation theory Finite element method Linear equations Asymptotic behavior Nonlocal diffusion Semilinear problems Asymptotic analysis Pazoto, A.F. Rossi, J.D. Asymptotic behaviour for a semilinear nonlocal equation |
topic_facet |
Asymptotic behaviour Nonlocal diffusion Semilinear problems Approximation theory Finite element method Linear equations Asymptotic behavior Nonlocal diffusion Semilinear problems Asymptotic analysis |
description |
We study the semilinear nonlocal equation u t =Ju-u-u p in the whole. First, we prove the global well-posedness for initial conditions. Next, we obtain the long time behaviour of the solutions. We show that different behaviours are possible depending on the exponent p and the kernel J: finite time extinction for p<1, faster than exponential decay for the linear case p=1, a weakly nonlinear behaviour for p large enough and a decay governed by the nonlinear term when p is greater than one but not so large. © 2007 - IOS Press and the authors. All rights reserved. |
format |
JOUR |
author |
Pazoto, A.F. Rossi, J.D. |
author_facet |
Pazoto, A.F. Rossi, J.D. |
author_sort |
Pazoto, A.F. |
title |
Asymptotic behaviour for a semilinear nonlocal equation |
title_short |
Asymptotic behaviour for a semilinear nonlocal equation |
title_full |
Asymptotic behaviour for a semilinear nonlocal equation |
title_fullStr |
Asymptotic behaviour for a semilinear nonlocal equation |
title_full_unstemmed |
Asymptotic behaviour for a semilinear nonlocal equation |
title_sort |
asymptotic behaviour for a semilinear nonlocal equation |
url |
http://hdl.handle.net/20.500.12110/paper_09217134_v52_n1-2_p143_Pazoto |
work_keys_str_mv |
AT pazotoaf asymptoticbehaviourforasemilinearnonlocalequation AT rossijd asymptoticbehaviourforasemilinearnonlocalequation |
_version_ |
1807320792647598080 |