Magneto-optic imaging of domain walls in ferrimagnetic garnet films

Magneto-optic (MO) imaging is based on Faraday rotation of a linearly polarized incident light beam illuminating a sensitive MO layer (MOL) placed in close contact to the sample. For in-plane magnetized layers of Lu3-xBixFe5-yGayO12 ferrimagnetic garnet films, zig-zag domain formation occurs wheneve...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ferrari, H., Bekeris, V., Johansen, T.H.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_09214526_v398_n2_p476_Ferrari
Aporte de:
id todo:paper_09214526_v398_n2_p476_Ferrari
record_format dspace
spelling todo:paper_09214526_v398_n2_p476_Ferrari2023-10-03T15:45:20Z Magneto-optic imaging of domain walls in ferrimagnetic garnet films Ferrari, H. Bekeris, V. Johansen, T.H. Magneto-optics Zig-zag domain walls Domain structures Garnet films Magnetized layers Magneto-optic imaging Anisotropy Ferroelectric films Imaging techniques Light polarization Magnetic fields Magnetooptical effects Magnetic domains Magneto-optic (MO) imaging is based on Faraday rotation of a linearly polarized incident light beam illuminating a sensitive MO layer (MOL) placed in close contact to the sample. For in-plane magnetized layers of Lu3-xBixFe5-yGayO12 ferrimagnetic garnet films, zig-zag domain formation occurs whenever the sample stray parallel field component, H∥, changes sign. Considering the anisotropy, exchange and magnetostatic energies in the Néel tails, and the contribution of an applied magnetic field, it is possible to describe the zig-zag walls that separate domains with opposite in-plane magnetization. The size of the walls decreases with the spatial derivative of H∥. We studied the evolution of these domains as we steadily forced the change in sign of H∥ to shorter length scales, from hundreds to a few microns. We describe the samples used to control the change in sign of H∥ at the MOL plane, and we analyze the images that evolve from zig-zag walls to much more complex closed domain structures. © 2007 Elsevier B.V. All rights reserved. Fil:Ferrari, H. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Bekeris, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_09214526_v398_n2_p476_Ferrari
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Magneto-optics
Zig-zag domain walls
Domain structures
Garnet films
Magnetized layers
Magneto-optic imaging
Anisotropy
Ferroelectric films
Imaging techniques
Light polarization
Magnetic fields
Magnetooptical effects
Magnetic domains
spellingShingle Magneto-optics
Zig-zag domain walls
Domain structures
Garnet films
Magnetized layers
Magneto-optic imaging
Anisotropy
Ferroelectric films
Imaging techniques
Light polarization
Magnetic fields
Magnetooptical effects
Magnetic domains
Ferrari, H.
Bekeris, V.
Johansen, T.H.
Magneto-optic imaging of domain walls in ferrimagnetic garnet films
topic_facet Magneto-optics
Zig-zag domain walls
Domain structures
Garnet films
Magnetized layers
Magneto-optic imaging
Anisotropy
Ferroelectric films
Imaging techniques
Light polarization
Magnetic fields
Magnetooptical effects
Magnetic domains
description Magneto-optic (MO) imaging is based on Faraday rotation of a linearly polarized incident light beam illuminating a sensitive MO layer (MOL) placed in close contact to the sample. For in-plane magnetized layers of Lu3-xBixFe5-yGayO12 ferrimagnetic garnet films, zig-zag domain formation occurs whenever the sample stray parallel field component, H∥, changes sign. Considering the anisotropy, exchange and magnetostatic energies in the Néel tails, and the contribution of an applied magnetic field, it is possible to describe the zig-zag walls that separate domains with opposite in-plane magnetization. The size of the walls decreases with the spatial derivative of H∥. We studied the evolution of these domains as we steadily forced the change in sign of H∥ to shorter length scales, from hundreds to a few microns. We describe the samples used to control the change in sign of H∥ at the MOL plane, and we analyze the images that evolve from zig-zag walls to much more complex closed domain structures. © 2007 Elsevier B.V. All rights reserved.
format JOUR
author Ferrari, H.
Bekeris, V.
Johansen, T.H.
author_facet Ferrari, H.
Bekeris, V.
Johansen, T.H.
author_sort Ferrari, H.
title Magneto-optic imaging of domain walls in ferrimagnetic garnet films
title_short Magneto-optic imaging of domain walls in ferrimagnetic garnet films
title_full Magneto-optic imaging of domain walls in ferrimagnetic garnet films
title_fullStr Magneto-optic imaging of domain walls in ferrimagnetic garnet films
title_full_unstemmed Magneto-optic imaging of domain walls in ferrimagnetic garnet films
title_sort magneto-optic imaging of domain walls in ferrimagnetic garnet films
url http://hdl.handle.net/20.500.12110/paper_09214526_v398_n2_p476_Ferrari
work_keys_str_mv AT ferrarih magnetoopticimagingofdomainwallsinferrimagneticgarnetfilms
AT bekerisv magnetoopticimagingofdomainwallsinferrimagneticgarnetfilms
AT johansenth magnetoopticimagingofdomainwallsinferrimagneticgarnetfilms
_version_ 1782026798497792000