Metal-insulator transition in correlated systems: A new numerical approach

We study the Mott transition in the Hubbard model within the dynamical mean field theory approach where the density matrix renormalization group method is used to solve its self-consistent equations. The DMRG technique solves the associated impurity problem. We obtain accurate estimates of the criti...

Descripción completa

Detalles Bibliográficos
Autores principales: García, D.J., Miranda, E., Hallberg, K., Rozenberg, M.J.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_09214526_v398_n2_p407_Garcia
Aporte de:
id todo:paper_09214526_v398_n2_p407_Garcia
record_format dspace
spelling todo:paper_09214526_v398_n2_p407_Garcia2023-10-03T15:45:19Z Metal-insulator transition in correlated systems: A new numerical approach García, D.J. Miranda, E. Hallberg, K. Rozenberg, M.J. Density matrix renormalization group Dynamical mean field theory Mott transition Density matrix renormalization groups Dynamical mean field theory Mott transitions Self-consistent equations Degrees of freedom (mechanics) Matrix algebra Mean field theory Optical conductivity Semiconductor doping Spectrum analysis Metal insulator boundaries We study the Mott transition in the Hubbard model within the dynamical mean field theory approach where the density matrix renormalization group method is used to solve its self-consistent equations. The DMRG technique solves the associated impurity problem. We obtain accurate estimates of the critical values of the metal-insulator transitions. For the Hubbard model away from the particle-hole symmetric case we focus our study on the region of strong interactions and finite doping where two solutions coexist. In this region we demonstrate the capabilities of this method by obtaining the frequency-dependent optical conductivity spectra. With this algorithm, more complex models having a larger number of degrees of freedom can be considered and finite-size effects can be minimized. © 2007 Elsevier B.V. All rights reserved. Fil:Rozenberg, M.J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_09214526_v398_n2_p407_Garcia
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Density matrix renormalization group
Dynamical mean field theory
Mott transition
Density matrix renormalization groups
Dynamical mean field theory
Mott transitions
Self-consistent equations
Degrees of freedom (mechanics)
Matrix algebra
Mean field theory
Optical conductivity
Semiconductor doping
Spectrum analysis
Metal insulator boundaries
spellingShingle Density matrix renormalization group
Dynamical mean field theory
Mott transition
Density matrix renormalization groups
Dynamical mean field theory
Mott transitions
Self-consistent equations
Degrees of freedom (mechanics)
Matrix algebra
Mean field theory
Optical conductivity
Semiconductor doping
Spectrum analysis
Metal insulator boundaries
García, D.J.
Miranda, E.
Hallberg, K.
Rozenberg, M.J.
Metal-insulator transition in correlated systems: A new numerical approach
topic_facet Density matrix renormalization group
Dynamical mean field theory
Mott transition
Density matrix renormalization groups
Dynamical mean field theory
Mott transitions
Self-consistent equations
Degrees of freedom (mechanics)
Matrix algebra
Mean field theory
Optical conductivity
Semiconductor doping
Spectrum analysis
Metal insulator boundaries
description We study the Mott transition in the Hubbard model within the dynamical mean field theory approach where the density matrix renormalization group method is used to solve its self-consistent equations. The DMRG technique solves the associated impurity problem. We obtain accurate estimates of the critical values of the metal-insulator transitions. For the Hubbard model away from the particle-hole symmetric case we focus our study on the region of strong interactions and finite doping where two solutions coexist. In this region we demonstrate the capabilities of this method by obtaining the frequency-dependent optical conductivity spectra. With this algorithm, more complex models having a larger number of degrees of freedom can be considered and finite-size effects can be minimized. © 2007 Elsevier B.V. All rights reserved.
format JOUR
author García, D.J.
Miranda, E.
Hallberg, K.
Rozenberg, M.J.
author_facet García, D.J.
Miranda, E.
Hallberg, K.
Rozenberg, M.J.
author_sort García, D.J.
title Metal-insulator transition in correlated systems: A new numerical approach
title_short Metal-insulator transition in correlated systems: A new numerical approach
title_full Metal-insulator transition in correlated systems: A new numerical approach
title_fullStr Metal-insulator transition in correlated systems: A new numerical approach
title_full_unstemmed Metal-insulator transition in correlated systems: A new numerical approach
title_sort metal-insulator transition in correlated systems: a new numerical approach
url http://hdl.handle.net/20.500.12110/paper_09214526_v398_n2_p407_Garcia
work_keys_str_mv AT garciadj metalinsulatortransitionincorrelatedsystemsanewnumericalapproach
AT mirandae metalinsulatortransitionincorrelatedsystemsanewnumericalapproach
AT hallbergk metalinsulatortransitionincorrelatedsystemsanewnumericalapproach
AT rozenbergmj metalinsulatortransitionincorrelatedsystemsanewnumericalapproach
_version_ 1807318616188649472