A parametric representation of totally mixed Nash equilibria
We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible numbe...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_08981221_v58_n6_p1126_Jeronimo |
Aporte de: |
id |
todo:paper_08981221_v58_n6_p1126_Jeronimo |
---|---|
record_format |
dspace |
spelling |
todo:paper_08981221_v58_n6_p1126_Jeronimo2023-10-03T15:44:00Z A parametric representation of totally mixed Nash equilibria Jeronimo, G. Perrucci, D. Sabia, J. Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Polynomials Game theory We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible number of this kind of equilibria. Then, we present symbolic procedures to describe the set of isolated totally mixed Nash equilibria of an arbitrary game and to compute, under certain general assumptions, the exact number of these equilibria. The complexity of all these algorithms is polynomial in the number of players, the number of each player's strategies and the generic number of totally mixed Nash equilibria of a game with the considered structure. © 2009 Elsevier Ltd. All rights reserved. Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sabia, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_08981221_v58_n6_p1126_Jeronimo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Polynomials Game theory |
spellingShingle |
Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Polynomials Game theory Jeronimo, G. Perrucci, D. Sabia, J. A parametric representation of totally mixed Nash equilibria |
topic_facet |
Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Complexity Multihomogeneous resultants Nash equilibria Noncooperative game theory Polynomial equation solving Polynomials Game theory |
description |
We present an algorithm to compute a parametric description of the totally mixed Nash equilibria of a generic game in normal form with a fixed structure. Using this representation, we also show an algorithm to compute polynomial inequality conditions under which a game has the maximum possible number of this kind of equilibria. Then, we present symbolic procedures to describe the set of isolated totally mixed Nash equilibria of an arbitrary game and to compute, under certain general assumptions, the exact number of these equilibria. The complexity of all these algorithms is polynomial in the number of players, the number of each player's strategies and the generic number of totally mixed Nash equilibria of a game with the considered structure. © 2009 Elsevier Ltd. All rights reserved. |
format |
JOUR |
author |
Jeronimo, G. Perrucci, D. Sabia, J. |
author_facet |
Jeronimo, G. Perrucci, D. Sabia, J. |
author_sort |
Jeronimo, G. |
title |
A parametric representation of totally mixed Nash equilibria |
title_short |
A parametric representation of totally mixed Nash equilibria |
title_full |
A parametric representation of totally mixed Nash equilibria |
title_fullStr |
A parametric representation of totally mixed Nash equilibria |
title_full_unstemmed |
A parametric representation of totally mixed Nash equilibria |
title_sort |
parametric representation of totally mixed nash equilibria |
url |
http://hdl.handle.net/20.500.12110/paper_08981221_v58_n6_p1126_Jeronimo |
work_keys_str_mv |
AT jeronimog aparametricrepresentationoftotallymixednashequilibria AT perruccid aparametricrepresentationoftotallymixednashequilibria AT sabiaj aparametricrepresentationoftotallymixednashequilibria AT jeronimog parametricrepresentationoftotallymixednashequilibria AT perruccid parametricrepresentationoftotallymixednashequilibria AT sabiaj parametricrepresentationoftotallymixednashequilibria |
_version_ |
1807320329974972416 |