Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N

Mycobacterium tuberculosis, the causative agent of human tuberculosis, is forced into latency by nitric oxide produced by macrophages during infection. In response to nitrosative stress M. tuberculosis has evolved a defense mechanism that relies on the oxygenated form of "truncated hemoglobin&q...

Descripción completa

Detalles Bibliográficos
Autores principales: Bidon-Chanal, A., Martí, M.A., Crespo, A., Milani, M., Orozco, M., Bolognesi, M., Luque, F.J., Estrin, D.A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_08873585_v64_n2_p457_BidonChanal
Aporte de:
id todo:paper_08873585_v64_n2_p457_BidonChanal
record_format dspace
spelling todo:paper_08873585_v64_n2_p457_BidonChanal2023-10-03T15:40:50Z Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N Bidon-Chanal, A. Martí, M.A. Crespo, A. Milani, M. Orozco, M. Bolognesi, M. Luque, F.J. Estrin, D.A. Ligand migration M. tuberculosis Molecular dynamics Nitric oxide deoxy truncated hemoglobin n dioxygenase heme hemoglobin ligand nitrate nitric oxide oxygen truncated hemoglobin n unclassified drug article bioinformatics conformational transition crystal structure defense mechanism diffusion latent period macrophage molecular dynamics Mycobacterium tuberculosis nitrosation nonhuman oxygen affinity priority journal protein conformation protein function simulation structure analysis X ray crystallography Mycobacterium tuberculosis Mycobacterium tuberculosis, the causative agent of human tuberculosis, is forced into latency by nitric oxide produced by macrophages during infection. In response to nitrosative stress M. tuberculosis has evolved a defense mechanism that relies on the oxygenated form of "truncated hemoglobin" N (trHbN), formally acting as NO-dioxygenase, yielding the harmless nitrate ion. X-ray crystal structures have shown that trHbN hosts a two-branched protein matrix tunnel system, proposed to control diatomic ligand migration to the heme, as the rate-limiting step in NO conversion to nitrate. Extended molecular dynamics simulations (0.1 μs), employed here to characterize the factors controlling diatomic ligand diffusion through the apolar tunnel system, suggest that O2 migration in deoxy-trHbN is restricted to a short branch of the tunnel, and that O2 binding to the heme drives conformational and dynamical fluctuations promoting NO migration through the long tunnel branch. The simulation results suggest that trHbN has evolved a dual-path mechanism for migration of O2 and NO to the heme, to achieve the most efficient NO detoxification. © 2006 Wiley-Liss, Inc. Fil:Martí, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Crespo, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Estrin, D.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_08873585_v64_n2_p457_BidonChanal
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Ligand migration
M. tuberculosis
Molecular dynamics
Nitric oxide
deoxy truncated hemoglobin n
dioxygenase
heme
hemoglobin
ligand
nitrate
nitric oxide
oxygen
truncated hemoglobin n
unclassified drug
article
bioinformatics
conformational transition
crystal structure
defense mechanism
diffusion
latent period
macrophage
molecular dynamics
Mycobacterium tuberculosis
nitrosation
nonhuman
oxygen affinity
priority journal
protein conformation
protein function
simulation
structure analysis
X ray crystallography
Mycobacterium tuberculosis
spellingShingle Ligand migration
M. tuberculosis
Molecular dynamics
Nitric oxide
deoxy truncated hemoglobin n
dioxygenase
heme
hemoglobin
ligand
nitrate
nitric oxide
oxygen
truncated hemoglobin n
unclassified drug
article
bioinformatics
conformational transition
crystal structure
defense mechanism
diffusion
latent period
macrophage
molecular dynamics
Mycobacterium tuberculosis
nitrosation
nonhuman
oxygen affinity
priority journal
protein conformation
protein function
simulation
structure analysis
X ray crystallography
Mycobacterium tuberculosis
Bidon-Chanal, A.
Martí, M.A.
Crespo, A.
Milani, M.
Orozco, M.
Bolognesi, M.
Luque, F.J.
Estrin, D.A.
Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N
topic_facet Ligand migration
M. tuberculosis
Molecular dynamics
Nitric oxide
deoxy truncated hemoglobin n
dioxygenase
heme
hemoglobin
ligand
nitrate
nitric oxide
oxygen
truncated hemoglobin n
unclassified drug
article
bioinformatics
conformational transition
crystal structure
defense mechanism
diffusion
latent period
macrophage
molecular dynamics
Mycobacterium tuberculosis
nitrosation
nonhuman
oxygen affinity
priority journal
protein conformation
protein function
simulation
structure analysis
X ray crystallography
Mycobacterium tuberculosis
description Mycobacterium tuberculosis, the causative agent of human tuberculosis, is forced into latency by nitric oxide produced by macrophages during infection. In response to nitrosative stress M. tuberculosis has evolved a defense mechanism that relies on the oxygenated form of "truncated hemoglobin" N (trHbN), formally acting as NO-dioxygenase, yielding the harmless nitrate ion. X-ray crystal structures have shown that trHbN hosts a two-branched protein matrix tunnel system, proposed to control diatomic ligand migration to the heme, as the rate-limiting step in NO conversion to nitrate. Extended molecular dynamics simulations (0.1 μs), employed here to characterize the factors controlling diatomic ligand diffusion through the apolar tunnel system, suggest that O2 migration in deoxy-trHbN is restricted to a short branch of the tunnel, and that O2 binding to the heme drives conformational and dynamical fluctuations promoting NO migration through the long tunnel branch. The simulation results suggest that trHbN has evolved a dual-path mechanism for migration of O2 and NO to the heme, to achieve the most efficient NO detoxification. © 2006 Wiley-Liss, Inc.
format JOUR
author Bidon-Chanal, A.
Martí, M.A.
Crespo, A.
Milani, M.
Orozco, M.
Bolognesi, M.
Luque, F.J.
Estrin, D.A.
author_facet Bidon-Chanal, A.
Martí, M.A.
Crespo, A.
Milani, M.
Orozco, M.
Bolognesi, M.
Luque, F.J.
Estrin, D.A.
author_sort Bidon-Chanal, A.
title Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N
title_short Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N
title_full Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N
title_fullStr Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N
title_full_unstemmed Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N
title_sort ligand-induced dynamical regulation of no conversion in mycobacterium tuberculosis truncated hemoglobin-n
url http://hdl.handle.net/20.500.12110/paper_08873585_v64_n2_p457_BidonChanal
work_keys_str_mv AT bidonchanala ligandinduceddynamicalregulationofnoconversioninmycobacteriumtuberculosistruncatedhemoglobinn
AT martima ligandinduceddynamicalregulationofnoconversioninmycobacteriumtuberculosistruncatedhemoglobinn
AT crespoa ligandinduceddynamicalregulationofnoconversioninmycobacteriumtuberculosistruncatedhemoglobinn
AT milanim ligandinduceddynamicalregulationofnoconversioninmycobacteriumtuberculosistruncatedhemoglobinn
AT orozcom ligandinduceddynamicalregulationofnoconversioninmycobacteriumtuberculosistruncatedhemoglobinn
AT bolognesim ligandinduceddynamicalregulationofnoconversioninmycobacteriumtuberculosistruncatedhemoglobinn
AT luquefj ligandinduceddynamicalregulationofnoconversioninmycobacteriumtuberculosistruncatedhemoglobinn
AT estrinda ligandinduceddynamicalregulationofnoconversioninmycobacteriumtuberculosistruncatedhemoglobinn
_version_ 1807322531718234112