A geometric index reduction method for implicit systems of differential algebraic equations

This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a diff...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: D'Alfonso, L., Jeronimo, G., Ollivier, F., Sedoglavic, A., Solernó, P.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_07477171_v46_n10_p1114_DAlfonso
Aporte de:
id todo:paper_07477171_v46_n10_p1114_DAlfonso
record_format dspace
spelling todo:paper_07477171_v46_n10_p1114_DAlfonso2023-10-03T15:38:58Z A geometric index reduction method for implicit systems of differential algebraic equations D'Alfonso, L. Jeronimo, G. Ollivier, F. Sedoglavic, A. Solernó, P. Geometric resolution Implicit systems of Differential Algebraic Equations Index Kronecker algorithm This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity. © 2011 Elsevier Ltd. Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_07477171_v46_n10_p1114_DAlfonso
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Geometric resolution
Implicit systems of Differential Algebraic Equations
Index
Kronecker algorithm
spellingShingle Geometric resolution
Implicit systems of Differential Algebraic Equations
Index
Kronecker algorithm
D'Alfonso, L.
Jeronimo, G.
Ollivier, F.
Sedoglavic, A.
Solernó, P.
A geometric index reduction method for implicit systems of differential algebraic equations
topic_facet Geometric resolution
Implicit systems of Differential Algebraic Equations
Index
Kronecker algorithm
description This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity. © 2011 Elsevier Ltd.
format JOUR
author D'Alfonso, L.
Jeronimo, G.
Ollivier, F.
Sedoglavic, A.
Solernó, P.
author_facet D'Alfonso, L.
Jeronimo, G.
Ollivier, F.
Sedoglavic, A.
Solernó, P.
author_sort D'Alfonso, L.
title A geometric index reduction method for implicit systems of differential algebraic equations
title_short A geometric index reduction method for implicit systems of differential algebraic equations
title_full A geometric index reduction method for implicit systems of differential algebraic equations
title_fullStr A geometric index reduction method for implicit systems of differential algebraic equations
title_full_unstemmed A geometric index reduction method for implicit systems of differential algebraic equations
title_sort geometric index reduction method for implicit systems of differential algebraic equations
url http://hdl.handle.net/20.500.12110/paper_07477171_v46_n10_p1114_DAlfonso
work_keys_str_mv AT dalfonsol ageometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT jeronimog ageometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT ollivierf ageometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT sedoglavica ageometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT solernop ageometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT dalfonsol geometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT jeronimog geometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT ollivierf geometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT sedoglavica geometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
AT solernop geometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations
_version_ 1807322765978501120