A geometric index reduction method for implicit systems of differential algebraic equations
This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a diff...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_07477171_v46_n10_p1114_DAlfonso |
Aporte de: |
id |
todo:paper_07477171_v46_n10_p1114_DAlfonso |
---|---|
record_format |
dspace |
spelling |
todo:paper_07477171_v46_n10_p1114_DAlfonso2023-10-03T15:38:58Z A geometric index reduction method for implicit systems of differential algebraic equations D'Alfonso, L. Jeronimo, G. Ollivier, F. Sedoglavic, A. Solernó, P. Geometric resolution Implicit systems of Differential Algebraic Equations Index Kronecker algorithm This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity. © 2011 Elsevier Ltd. Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Solernó, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_07477171_v46_n10_p1114_DAlfonso |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Geometric resolution Implicit systems of Differential Algebraic Equations Index Kronecker algorithm |
spellingShingle |
Geometric resolution Implicit systems of Differential Algebraic Equations Index Kronecker algorithm D'Alfonso, L. Jeronimo, G. Ollivier, F. Sedoglavic, A. Solernó, P. A geometric index reduction method for implicit systems of differential algebraic equations |
topic_facet |
Geometric resolution Implicit systems of Differential Algebraic Equations Index Kronecker algorithm |
description |
This paper deals with the index reduction problem for the class of quasi-regular DAE systems. It is shown that any of these systems can be transformed to a generically equivalent first order DAE system consisting of a single purely algebraic (polynomial) equation plus an under-determined ODE (a differential Kronecker representation) in as many variables as the order of the input system. This can be done by means of a Kronecker-type algorithm with bounded complexity. © 2011 Elsevier Ltd. |
format |
JOUR |
author |
D'Alfonso, L. Jeronimo, G. Ollivier, F. Sedoglavic, A. Solernó, P. |
author_facet |
D'Alfonso, L. Jeronimo, G. Ollivier, F. Sedoglavic, A. Solernó, P. |
author_sort |
D'Alfonso, L. |
title |
A geometric index reduction method for implicit systems of differential algebraic equations |
title_short |
A geometric index reduction method for implicit systems of differential algebraic equations |
title_full |
A geometric index reduction method for implicit systems of differential algebraic equations |
title_fullStr |
A geometric index reduction method for implicit systems of differential algebraic equations |
title_full_unstemmed |
A geometric index reduction method for implicit systems of differential algebraic equations |
title_sort |
geometric index reduction method for implicit systems of differential algebraic equations |
url |
http://hdl.handle.net/20.500.12110/paper_07477171_v46_n10_p1114_DAlfonso |
work_keys_str_mv |
AT dalfonsol ageometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations AT jeronimog ageometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations AT ollivierf ageometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations AT sedoglavica ageometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations AT solernop ageometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations AT dalfonsol geometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations AT jeronimog geometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations AT ollivierf geometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations AT sedoglavica geometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations AT solernop geometricindexreductionmethodforimplicitsystemsofdifferentialalgebraicequations |
_version_ |
1807322765978501120 |