On the minimum of a positive polynomial over the standard simplex
We present a new positive lower bound for the minimum value taken by a polynomial P with integer coefficients in k variables over the standard simplex of Rk, assuming that P is positive on the simplex. This bound depends only on the number of variables k, the degree d and the bitsize τ of the coeffi...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_07477171_v45_n4_p434_Jeronimo |
Aporte de: |
id |
todo:paper_07477171_v45_n4_p434_Jeronimo |
---|---|
record_format |
dspace |
spelling |
todo:paper_07477171_v45_n4_p434_Jeronimo2023-10-03T15:38:57Z On the minimum of a positive polynomial over the standard simplex Jeronimo, G. Perrucci, D. Optimization on polyhedra Positivity of polynomials We present a new positive lower bound for the minimum value taken by a polynomial P with integer coefficients in k variables over the standard simplex of Rk, assuming that P is positive on the simplex. This bound depends only on the number of variables k, the degree d and the bitsize τ of the coefficients of P and improves all the previous bounds for arbitrary polynomials which are positive over the simplex. © 2010 Elsevier Ltd. All rights reserved. Fil:Jeronimo, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Perrucci, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_07477171_v45_n4_p434_Jeronimo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Optimization on polyhedra Positivity of polynomials |
spellingShingle |
Optimization on polyhedra Positivity of polynomials Jeronimo, G. Perrucci, D. On the minimum of a positive polynomial over the standard simplex |
topic_facet |
Optimization on polyhedra Positivity of polynomials |
description |
We present a new positive lower bound for the minimum value taken by a polynomial P with integer coefficients in k variables over the standard simplex of Rk, assuming that P is positive on the simplex. This bound depends only on the number of variables k, the degree d and the bitsize τ of the coefficients of P and improves all the previous bounds for arbitrary polynomials which are positive over the simplex. © 2010 Elsevier Ltd. All rights reserved. |
format |
JOUR |
author |
Jeronimo, G. Perrucci, D. |
author_facet |
Jeronimo, G. Perrucci, D. |
author_sort |
Jeronimo, G. |
title |
On the minimum of a positive polynomial over the standard simplex |
title_short |
On the minimum of a positive polynomial over the standard simplex |
title_full |
On the minimum of a positive polynomial over the standard simplex |
title_fullStr |
On the minimum of a positive polynomial over the standard simplex |
title_full_unstemmed |
On the minimum of a positive polynomial over the standard simplex |
title_sort |
on the minimum of a positive polynomial over the standard simplex |
url |
http://hdl.handle.net/20.500.12110/paper_07477171_v45_n4_p434_Jeronimo |
work_keys_str_mv |
AT jeronimog ontheminimumofapositivepolynomialoverthestandardsimplex AT perruccid ontheminimumofapositivepolynomialoverthestandardsimplex |
_version_ |
1807323656940945408 |