Numerical analysis of stochastic differential equations with explosions

Stochastic ordinary differential equations may have solutions that explode in finite or infinite time. In this article we design an adaptive numerical scheme that reproduces the explosive behavior. The time step is adapted according to the size of the computed solution in such a way that, under adeq...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dávila, J., Bonder, J.F., Rossi, J.D., Groisman, P., Sued, M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_07362994_v23_n4_p809_Davila
Aporte de:
id todo:paper_07362994_v23_n4_p809_Davila
record_format dspace
spelling todo:paper_07362994_v23_n4_p809_Davila2023-10-03T15:37:48Z Numerical analysis of stochastic differential equations with explosions Dávila, J. Bonder, J.F. Rossi, J.D. Groisman, P. Sued, M. Explosion Numerical approximations Stochastic differential equations Stochastic ordinary differential equations may have solutions that explode in finite or infinite time. In this article we design an adaptive numerical scheme that reproduces the explosive behavior. The time step is adapted according to the size of the computed solution in such a way that, under adequate hypotheses, the explosion of the solutions is reproduced. Copyright © Taylor & Francis, Inc. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Groisman, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Sued, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_07362994_v23_n4_p809_Davila
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Explosion
Numerical approximations
Stochastic differential equations
spellingShingle Explosion
Numerical approximations
Stochastic differential equations
Dávila, J.
Bonder, J.F.
Rossi, J.D.
Groisman, P.
Sued, M.
Numerical analysis of stochastic differential equations with explosions
topic_facet Explosion
Numerical approximations
Stochastic differential equations
description Stochastic ordinary differential equations may have solutions that explode in finite or infinite time. In this article we design an adaptive numerical scheme that reproduces the explosive behavior. The time step is adapted according to the size of the computed solution in such a way that, under adequate hypotheses, the explosion of the solutions is reproduced. Copyright © Taylor & Francis, Inc.
format JOUR
author Dávila, J.
Bonder, J.F.
Rossi, J.D.
Groisman, P.
Sued, M.
author_facet Dávila, J.
Bonder, J.F.
Rossi, J.D.
Groisman, P.
Sued, M.
author_sort Dávila, J.
title Numerical analysis of stochastic differential equations with explosions
title_short Numerical analysis of stochastic differential equations with explosions
title_full Numerical analysis of stochastic differential equations with explosions
title_fullStr Numerical analysis of stochastic differential equations with explosions
title_full_unstemmed Numerical analysis of stochastic differential equations with explosions
title_sort numerical analysis of stochastic differential equations with explosions
url http://hdl.handle.net/20.500.12110/paper_07362994_v23_n4_p809_Davila
work_keys_str_mv AT davilaj numericalanalysisofstochasticdifferentialequationswithexplosions
AT bonderjf numericalanalysisofstochasticdifferentialequationswithexplosions
AT rossijd numericalanalysisofstochasticdifferentialequationswithexplosions
AT groismanp numericalanalysisofstochasticdifferentialequationswithexplosions
AT suedm numericalanalysisofstochasticdifferentialequationswithexplosions
_version_ 1807322405456052224