On clique-perfect and K-perfect graphs
A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H is equal to the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. When equality holds for every clique subgraph of G, the graph is c-clique-perfect. A graph G is K-perfect when...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03817032_v80_n_p97_Bonomo |
Aporte de: |
id |
todo:paper_03817032_v80_n_p97_Bonomo |
---|---|
record_format |
dspace |
spelling |
todo:paper_03817032_v80_n_p97_Bonomo2023-10-03T15:33:42Z On clique-perfect and K-perfect graphs Bonomo, F. Durán, G. Groshaus, M. Szwarcfiter, J.L. Clique graphs Clique-Helly graphs Clique-perfect graphs Good graphs K-perfect graphs Perfect graphs A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H is equal to the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. When equality holds for every clique subgraph of G, the graph is c-clique-perfect. A graph G is K-perfect when its clique graph K(G) is perfect. In this work, relations are described among the classes of perfect, K-perfect, clique-perfect and c-clique-perfect graphs. Besides, partial characterizations of K-perfect graphs using polyhedral theory and clique subgraphs are formulated. Fil:Bonomo, F. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Groshaus, M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03817032_v80_n_p97_Bonomo |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Clique graphs Clique-Helly graphs Clique-perfect graphs Good graphs K-perfect graphs Perfect graphs |
spellingShingle |
Clique graphs Clique-Helly graphs Clique-perfect graphs Good graphs K-perfect graphs Perfect graphs Bonomo, F. Durán, G. Groshaus, M. Szwarcfiter, J.L. On clique-perfect and K-perfect graphs |
topic_facet |
Clique graphs Clique-Helly graphs Clique-perfect graphs Good graphs K-perfect graphs Perfect graphs |
description |
A graph G is clique-perfect if the cardinality of a maximum clique-independent set of H is equal to the cardinality of a minimum clique-transversal of H, for every induced subgraph H of G. When equality holds for every clique subgraph of G, the graph is c-clique-perfect. A graph G is K-perfect when its clique graph K(G) is perfect. In this work, relations are described among the classes of perfect, K-perfect, clique-perfect and c-clique-perfect graphs. Besides, partial characterizations of K-perfect graphs using polyhedral theory and clique subgraphs are formulated. |
format |
JOUR |
author |
Bonomo, F. Durán, G. Groshaus, M. Szwarcfiter, J.L. |
author_facet |
Bonomo, F. Durán, G. Groshaus, M. Szwarcfiter, J.L. |
author_sort |
Bonomo, F. |
title |
On clique-perfect and K-perfect graphs |
title_short |
On clique-perfect and K-perfect graphs |
title_full |
On clique-perfect and K-perfect graphs |
title_fullStr |
On clique-perfect and K-perfect graphs |
title_full_unstemmed |
On clique-perfect and K-perfect graphs |
title_sort |
on clique-perfect and k-perfect graphs |
url |
http://hdl.handle.net/20.500.12110/paper_03817032_v80_n_p97_Bonomo |
work_keys_str_mv |
AT bonomof oncliqueperfectandkperfectgraphs AT durang oncliqueperfectandkperfectgraphs AT groshausm oncliqueperfectandkperfectgraphs AT szwarcfiterjl oncliqueperfectandkperfectgraphs |
_version_ |
1807318475721408512 |