Fisher information description of the classicalquantal transition

We investigate the classical limit of the dynamics of a semiclassical system that represents the interaction between matter and a given field. The concept of Fisher Information measure (F) on using as a quantifier of the process, we find that it adequately describes the transition, detecting the mos...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kowalski, A.M., Martín, M.T., Plastino, A., Rosso, O.A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03784371_v390_n12_p2435_Kowalski
Aporte de:
id todo:paper_03784371_v390_n12_p2435_Kowalski
record_format dspace
spelling todo:paper_03784371_v390_n12_p2435_Kowalski2023-10-03T15:32:58Z Fisher information description of the classicalquantal transition Kowalski, A.M. Martín, M.T. Plastino, A. Rosso, O.A. Fisher information Information theory Quantum chaos Semiclassical theories Statistical complexity Classical limits Fisher information Fisher information measures Information quantifiers Quantum chaos Semiclassical theories Shannon entropy Statistical complexity Chaos theory Entropy Information theory Probability distributions Quantum theory Visualization Fisher information matrix We investigate the classical limit of the dynamics of a semiclassical system that represents the interaction between matter and a given field. The concept of Fisher Information measure (F) on using as a quantifier of the process, we find that it adequately describes the transition, detecting the most salient details of the changeover. Used in conjunction with other possible information quantifiers, such as the Normalized Shannon Entropy (H) and the Statistical Complexity (C) by recourse to appropriate planar representations like the Fisher Entropy (F×H) and Fisher Complexity (F×C) planes, one obtains a better visualization of the transition than that provided by just one quantifier by itself. In the evaluation of these Information Theory quantifiers, we used the Bandt and Pompe methodology for the obtention of the corresponding probability distribution. © 2011 Elsevier B.V. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03784371_v390_n12_p2435_Kowalski
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Fisher information
Information theory
Quantum chaos
Semiclassical theories
Statistical complexity
Classical limits
Fisher information
Fisher information measures
Information quantifiers
Quantum chaos
Semiclassical theories
Shannon entropy
Statistical complexity
Chaos theory
Entropy
Information theory
Probability distributions
Quantum theory
Visualization
Fisher information matrix
spellingShingle Fisher information
Information theory
Quantum chaos
Semiclassical theories
Statistical complexity
Classical limits
Fisher information
Fisher information measures
Information quantifiers
Quantum chaos
Semiclassical theories
Shannon entropy
Statistical complexity
Chaos theory
Entropy
Information theory
Probability distributions
Quantum theory
Visualization
Fisher information matrix
Kowalski, A.M.
Martín, M.T.
Plastino, A.
Rosso, O.A.
Fisher information description of the classicalquantal transition
topic_facet Fisher information
Information theory
Quantum chaos
Semiclassical theories
Statistical complexity
Classical limits
Fisher information
Fisher information measures
Information quantifiers
Quantum chaos
Semiclassical theories
Shannon entropy
Statistical complexity
Chaos theory
Entropy
Information theory
Probability distributions
Quantum theory
Visualization
Fisher information matrix
description We investigate the classical limit of the dynamics of a semiclassical system that represents the interaction between matter and a given field. The concept of Fisher Information measure (F) on using as a quantifier of the process, we find that it adequately describes the transition, detecting the most salient details of the changeover. Used in conjunction with other possible information quantifiers, such as the Normalized Shannon Entropy (H) and the Statistical Complexity (C) by recourse to appropriate planar representations like the Fisher Entropy (F×H) and Fisher Complexity (F×C) planes, one obtains a better visualization of the transition than that provided by just one quantifier by itself. In the evaluation of these Information Theory quantifiers, we used the Bandt and Pompe methodology for the obtention of the corresponding probability distribution. © 2011 Elsevier B.V. All rights reserved.
format JOUR
author Kowalski, A.M.
Martín, M.T.
Plastino, A.
Rosso, O.A.
author_facet Kowalski, A.M.
Martín, M.T.
Plastino, A.
Rosso, O.A.
author_sort Kowalski, A.M.
title Fisher information description of the classicalquantal transition
title_short Fisher information description of the classicalquantal transition
title_full Fisher information description of the classicalquantal transition
title_fullStr Fisher information description of the classicalquantal transition
title_full_unstemmed Fisher information description of the classicalquantal transition
title_sort fisher information description of the classicalquantal transition
url http://hdl.handle.net/20.500.12110/paper_03784371_v390_n12_p2435_Kowalski
work_keys_str_mv AT kowalskiam fisherinformationdescriptionoftheclassicalquantaltransition
AT martinmt fisherinformationdescriptionoftheclassicalquantaltransition
AT plastinoa fisherinformationdescriptionoftheclassicalquantaltransition
AT rossooa fisherinformationdescriptionoftheclassicalquantaltransition
_version_ 1807323243531468800