A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem

In this paper we obtain a priori and a posteriori error estimates for stabilized low-order mixed finite element methods for the Stokes eigenvalue problem. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an error estimator of t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Armentano, M.G., Moreno, V.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03770427_v269_n_p132_Armentano
Aporte de:
id todo:paper_03770427_v269_n_p132_Armentano
record_format dspace
spelling todo:paper_03770427_v269_n_p132_Armentano2023-10-03T15:31:29Z A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem Armentano, M.G. Moreno, V. A posteriori error estimates Stabilized mixed methods Stokes eigenvalue problem Error analysis Estimation A-posteriori error estimates Error estimators Higher order terms Mixed finite element methods Mixed finite elements Mixed method Priori error estimate Stokes eigenvalue problems Eigenvalues and eigenfunctions In this paper we obtain a priori and a posteriori error estimates for stabilized low-order mixed finite element methods for the Stokes eigenvalue problem. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. We also present some numerical tests which show the performance of the adaptive scheme. © 2014 Elsevier B.V. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03770427_v269_n_p132_Armentano
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic A posteriori error estimates
Stabilized mixed methods
Stokes eigenvalue problem
Error analysis
Estimation
A-posteriori error estimates
Error estimators
Higher order terms
Mixed finite element methods
Mixed finite elements
Mixed method
Priori error estimate
Stokes eigenvalue problems
Eigenvalues and eigenfunctions
spellingShingle A posteriori error estimates
Stabilized mixed methods
Stokes eigenvalue problem
Error analysis
Estimation
A-posteriori error estimates
Error estimators
Higher order terms
Mixed finite element methods
Mixed finite elements
Mixed method
Priori error estimate
Stokes eigenvalue problems
Eigenvalues and eigenfunctions
Armentano, M.G.
Moreno, V.
A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
topic_facet A posteriori error estimates
Stabilized mixed methods
Stokes eigenvalue problem
Error analysis
Estimation
A-posteriori error estimates
Error estimators
Higher order terms
Mixed finite element methods
Mixed finite elements
Mixed method
Priori error estimate
Stokes eigenvalue problems
Eigenvalues and eigenfunctions
description In this paper we obtain a priori and a posteriori error estimates for stabilized low-order mixed finite element methods for the Stokes eigenvalue problem. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an error estimator of the residual type which can be computed locally from the approximate eigenpair and we prove that, up to higher order terms, the estimator is equivalent to the energy norm of the error. We also present some numerical tests which show the performance of the adaptive scheme. © 2014 Elsevier B.V. All rights reserved.
format JOUR
author Armentano, M.G.
Moreno, V.
author_facet Armentano, M.G.
Moreno, V.
author_sort Armentano, M.G.
title A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
title_short A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
title_full A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
title_fullStr A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
title_full_unstemmed A posteriori error estimates of stabilized low-order mixed finite elements for the Stokes eigenvalue problem
title_sort posteriori error estimates of stabilized low-order mixed finite elements for the stokes eigenvalue problem
url http://hdl.handle.net/20.500.12110/paper_03770427_v269_n_p132_Armentano
work_keys_str_mv AT armentanomg aposteriorierrorestimatesofstabilizedlowordermixedfiniteelementsforthestokeseigenvalueproblem
AT morenov aposteriorierrorestimatesofstabilizedlowordermixedfiniteelementsforthestokeseigenvalueproblem
AT armentanomg posteriorierrorestimatesofstabilizedlowordermixedfiniteelementsforthestokeseigenvalueproblem
AT morenov posteriorierrorestimatesofstabilizedlowordermixedfiniteelementsforthestokeseigenvalueproblem
_version_ 1807315662055407616