Optimal partition problems for the fractional Laplacian
In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ A...
Guardado en:
Autor principal: | Ritorto, A. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03733114_v197_n2_p501_Ritorto |
Aporte de: |
Ejemplares similares
-
Optimal partition problems for the fractional Laplacian
Publicado: (2018) -
A class of shape optimization problems for some nonlocal operators
por: Fernández Bonder, J., et al. -
A class of shape optimization problems for some nonlocal operators
Publicado: (2018) -
An optimization problem for the first eigenvalue of the p-fractional Laplacian
Publicado: (2018) -
An optimization problem for the first eigenvalue of the p-fractional Laplacian
por: Del Pezzo, L., et al.