Optimal partition problems for the fractional Laplacian
In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ A...
Guardado en:
Autor principal: | |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03733114_v197_n2_p501_Ritorto |
Aporte de: |
id |
todo:paper_03733114_v197_n2_p501_Ritorto |
---|---|
record_format |
dspace |
spelling |
todo:paper_03733114_v197_n2_p501_Ritorto2023-10-03T15:30:20Z Optimal partition problems for the fractional Laplacian Ritorto, A. Fractional capacities Fractional partial equations Optimal partition In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ Aj= ∅ is understood in the sense of Gagliardo s-capacity, where 0 < s < 1. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s= 1 , studied in [5]. © 2017, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03733114_v197_n2_p501_Ritorto |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Fractional capacities Fractional partial equations Optimal partition |
spellingShingle |
Fractional capacities Fractional partial equations Optimal partition Ritorto, A. Optimal partition problems for the fractional Laplacian |
topic_facet |
Fractional capacities Fractional partial equations Optimal partition |
description |
In this work, we prove an existence result for an optimal partition problem of the form min{Fs(A1, …, Am) : Ai ∈ As, Ai ∩ Aj = ∅ for i ≠ j}, where Fs is a cost functional with suitable assumptions of monotonicity and lower semicontinuity, As is the class of admissible domains and the condition Ai∩ Aj= ∅ is understood in the sense of Gagliardo s-capacity, where 0 < s < 1. Examples of this type of problem are related to fractional eigenvalues. As the main outcome of this article, we prove some type of convergence of the s-minimizers to the minimizer of the problem with s= 1 , studied in [5]. © 2017, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany. |
format |
JOUR |
author |
Ritorto, A. |
author_facet |
Ritorto, A. |
author_sort |
Ritorto, A. |
title |
Optimal partition problems for the fractional Laplacian |
title_short |
Optimal partition problems for the fractional Laplacian |
title_full |
Optimal partition problems for the fractional Laplacian |
title_fullStr |
Optimal partition problems for the fractional Laplacian |
title_full_unstemmed |
Optimal partition problems for the fractional Laplacian |
title_sort |
optimal partition problems for the fractional laplacian |
url |
http://hdl.handle.net/20.500.12110/paper_03733114_v197_n2_p501_Ritorto |
work_keys_str_mv |
AT ritortoa optimalpartitionproblemsforthefractionallaplacian |
_version_ |
1807319028973174784 |