The best Sobolev trace constant in a domain with oscillating boundary

In this paper we study homogenization problems for the best constant for the Sobolev trace embedding W1, p (Ω) {right arrow, hooked} Lq (∂ Ω) in a bounded smooth domain when the boundary is perturbed by adding an oscillation. We find that there exists a critical size of the amplitude of the oscillat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fernández Bonder, J., Orive, R., Rossi, J.D.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0362546X_v67_n4_p1173_FernandezBonder
Aporte de:
id todo:paper_0362546X_v67_n4_p1173_FernandezBonder
record_format dspace
spelling todo:paper_0362546X_v67_n4_p1173_FernandezBonder2023-10-03T15:27:19Z The best Sobolev trace constant in a domain with oscillating boundary Fernández Bonder, J. Orive, R. Rossi, J.D. Homogenization Sobolev trace embedding Steklov eigenvalues Boundary conditions Convergence of numerical methods Eigenvalues and eigenfunctions Perturbation techniques Problem solving Homogenization problems Sobolev trace embedding Steklov eigenvalues Domain decomposition methods In this paper we study homogenization problems for the best constant for the Sobolev trace embedding W1, p (Ω) {right arrow, hooked} Lq (∂ Ω) in a bounded smooth domain when the boundary is perturbed by adding an oscillation. We find that there exists a critical size of the amplitude of the oscillations for which the limit problem has a weight on the boundary. For sizes larger than critical the best trace constant goes to zero and for sizes smaller than critical it converges to the best constant in the domain without perturbations. © 2006 Elsevier Ltd. All rights reserved. Fil:Fernández Bonder, J. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Rossi, J.D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0362546X_v67_n4_p1173_FernandezBonder
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Homogenization
Sobolev trace embedding
Steklov eigenvalues
Boundary conditions
Convergence of numerical methods
Eigenvalues and eigenfunctions
Perturbation techniques
Problem solving
Homogenization problems
Sobolev trace embedding
Steklov eigenvalues
Domain decomposition methods
spellingShingle Homogenization
Sobolev trace embedding
Steklov eigenvalues
Boundary conditions
Convergence of numerical methods
Eigenvalues and eigenfunctions
Perturbation techniques
Problem solving
Homogenization problems
Sobolev trace embedding
Steklov eigenvalues
Domain decomposition methods
Fernández Bonder, J.
Orive, R.
Rossi, J.D.
The best Sobolev trace constant in a domain with oscillating boundary
topic_facet Homogenization
Sobolev trace embedding
Steklov eigenvalues
Boundary conditions
Convergence of numerical methods
Eigenvalues and eigenfunctions
Perturbation techniques
Problem solving
Homogenization problems
Sobolev trace embedding
Steklov eigenvalues
Domain decomposition methods
description In this paper we study homogenization problems for the best constant for the Sobolev trace embedding W1, p (Ω) {right arrow, hooked} Lq (∂ Ω) in a bounded smooth domain when the boundary is perturbed by adding an oscillation. We find that there exists a critical size of the amplitude of the oscillations for which the limit problem has a weight on the boundary. For sizes larger than critical the best trace constant goes to zero and for sizes smaller than critical it converges to the best constant in the domain without perturbations. © 2006 Elsevier Ltd. All rights reserved.
format JOUR
author Fernández Bonder, J.
Orive, R.
Rossi, J.D.
author_facet Fernández Bonder, J.
Orive, R.
Rossi, J.D.
author_sort Fernández Bonder, J.
title The best Sobolev trace constant in a domain with oscillating boundary
title_short The best Sobolev trace constant in a domain with oscillating boundary
title_full The best Sobolev trace constant in a domain with oscillating boundary
title_fullStr The best Sobolev trace constant in a domain with oscillating boundary
title_full_unstemmed The best Sobolev trace constant in a domain with oscillating boundary
title_sort best sobolev trace constant in a domain with oscillating boundary
url http://hdl.handle.net/20.500.12110/paper_0362546X_v67_n4_p1173_FernandezBonder
work_keys_str_mv AT fernandezbonderj thebestsobolevtraceconstantinadomainwithoscillatingboundary
AT oriver thebestsobolevtraceconstantinadomainwithoscillatingboundary
AT rossijd thebestsobolevtraceconstantinadomainwithoscillatingboundary
AT fernandezbonderj bestsobolevtraceconstantinadomainwithoscillatingboundary
AT oriver bestsobolevtraceconstantinadomainwithoscillatingboundary
AT rossijd bestsobolevtraceconstantinadomainwithoscillatingboundary
_version_ 1807315206494224384