On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass

We extend the existing theory on large-time asymptotics for convection-diffusion equations, based on the entropy-entropy dissipation approach, to certain fast diffusion equations with uniformly convex confinement potential and finite-mass but infinite-entropy equilibrium solutions. We prove existenc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lederman, C., Markowich, P.A.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_03605302_v28_n1-2_p301_Lederman
Aporte de:
id todo:paper_03605302_v28_n1-2_p301_Lederman
record_format dspace
spelling todo:paper_03605302_v28_n1-2_p301_Lederman2023-10-03T15:26:36Z On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass Lederman, C. Markowich, P.A. We extend the existing theory on large-time asymptotics for convection-diffusion equations, based on the entropy-entropy dissipation approach, to certain fast diffusion equations with uniformly convex confinement potential and finite-mass but infinite-entropy equilibrium solutions. We prove existence of a mass preserving solution of the Cauchy problem and we show exponential convergence, as t → ∞, at a precise rate to the corresponding equilibrium solution in the L1 norm. As by-product we also derive corresponding generalized Sobolev inequalities. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03605302_v28_n1-2_p301_Lederman
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description We extend the existing theory on large-time asymptotics for convection-diffusion equations, based on the entropy-entropy dissipation approach, to certain fast diffusion equations with uniformly convex confinement potential and finite-mass but infinite-entropy equilibrium solutions. We prove existence of a mass preserving solution of the Cauchy problem and we show exponential convergence, as t → ∞, at a precise rate to the corresponding equilibrium solution in the L1 norm. As by-product we also derive corresponding generalized Sobolev inequalities.
format JOUR
author Lederman, C.
Markowich, P.A.
spellingShingle Lederman, C.
Markowich, P.A.
On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
author_facet Lederman, C.
Markowich, P.A.
author_sort Lederman, C.
title On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
title_short On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
title_full On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
title_fullStr On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
title_full_unstemmed On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
title_sort on fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
url http://hdl.handle.net/20.500.12110/paper_03605302_v28_n1-2_p301_Lederman
work_keys_str_mv AT ledermanc onfastdiffusionequationswithinfiniteequilibriumentropyandfiniteequilibriummass
AT markowichpa onfastdiffusionequationswithinfiniteequilibriumentropyandfiniteequilibriummass
_version_ 1807317135230238720