On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass
We extend the existing theory on large-time asymptotics for convection-diffusion equations, based on the entropy-entropy dissipation approach, to certain fast diffusion equations with uniformly convex confinement potential and finite-mass but infinite-entropy equilibrium solutions. We prove existenc...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03605302_v28_n1-2_p301_Lederman |
Aporte de: |
id |
todo:paper_03605302_v28_n1-2_p301_Lederman |
---|---|
record_format |
dspace |
spelling |
todo:paper_03605302_v28_n1-2_p301_Lederman2023-10-03T15:26:36Z On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass Lederman, C. Markowich, P.A. We extend the existing theory on large-time asymptotics for convection-diffusion equations, based on the entropy-entropy dissipation approach, to certain fast diffusion equations with uniformly convex confinement potential and finite-mass but infinite-entropy equilibrium solutions. We prove existence of a mass preserving solution of the Cauchy problem and we show exponential convergence, as t → ∞, at a precise rate to the corresponding equilibrium solution in the L1 norm. As by-product we also derive corresponding generalized Sobolev inequalities. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03605302_v28_n1-2_p301_Lederman |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
We extend the existing theory on large-time asymptotics for convection-diffusion equations, based on the entropy-entropy dissipation approach, to certain fast diffusion equations with uniformly convex confinement potential and finite-mass but infinite-entropy equilibrium solutions. We prove existence of a mass preserving solution of the Cauchy problem and we show exponential convergence, as t → ∞, at a precise rate to the corresponding equilibrium solution in the L1 norm. As by-product we also derive corresponding generalized Sobolev inequalities. |
format |
JOUR |
author |
Lederman, C. Markowich, P.A. |
spellingShingle |
Lederman, C. Markowich, P.A. On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass |
author_facet |
Lederman, C. Markowich, P.A. |
author_sort |
Lederman, C. |
title |
On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass |
title_short |
On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass |
title_full |
On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass |
title_fullStr |
On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass |
title_full_unstemmed |
On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass |
title_sort |
on fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass |
url |
http://hdl.handle.net/20.500.12110/paper_03605302_v28_n1-2_p301_Lederman |
work_keys_str_mv |
AT ledermanc onfastdiffusionequationswithinfiniteequilibriumentropyandfiniteequilibriummass AT markowichpa onfastdiffusionequationswithinfiniteequilibriumentropyandfiniteequilibriummass |
_version_ |
1807317135230238720 |