Robust estimation for linear regression with asymmetric errors
The authors propose a new class of robust estimators for the parameters of a regression model in which the distribution of the error terms belongs to a class of exponential families including the log-gamma distribution. These estimates, which are a natural extension of the MM-estimates for ordinary...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03195724_v33_n4_p511_Bianco |
Aporte de: |
id |
todo:paper_03195724_v33_n4_p511_Bianco |
---|---|
record_format |
dspace |
spelling |
todo:paper_03195724_v33_n4_p511_Bianco2023-10-03T15:23:14Z Robust estimation for linear regression with asymmetric errors Bianco, A.M. Garcia Ben, M. Yohai, V.J. Log-gamma regression M-estimates Robust estimates The authors propose a new class of robust estimators for the parameters of a regression model in which the distribution of the error terms belongs to a class of exponential families including the log-gamma distribution. These estimates, which are a natural extension of the MM-estimates for ordinary regression, may combine simultaneously high asymptotic efficiency and a high breakdown point. The authors prove the consistency and derive the asymptotic normal distribution of these estimates. A Monte Carlo study allows them to assess the efficiency and robustness of these estimates for finite samples. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03195724_v33_n4_p511_Bianco |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Log-gamma regression M-estimates Robust estimates |
spellingShingle |
Log-gamma regression M-estimates Robust estimates Bianco, A.M. Garcia Ben, M. Yohai, V.J. Robust estimation for linear regression with asymmetric errors |
topic_facet |
Log-gamma regression M-estimates Robust estimates |
description |
The authors propose a new class of robust estimators for the parameters of a regression model in which the distribution of the error terms belongs to a class of exponential families including the log-gamma distribution. These estimates, which are a natural extension of the MM-estimates for ordinary regression, may combine simultaneously high asymptotic efficiency and a high breakdown point. The authors prove the consistency and derive the asymptotic normal distribution of these estimates. A Monte Carlo study allows them to assess the efficiency and robustness of these estimates for finite samples. |
format |
JOUR |
author |
Bianco, A.M. Garcia Ben, M. Yohai, V.J. |
author_facet |
Bianco, A.M. Garcia Ben, M. Yohai, V.J. |
author_sort |
Bianco, A.M. |
title |
Robust estimation for linear regression with asymmetric errors |
title_short |
Robust estimation for linear regression with asymmetric errors |
title_full |
Robust estimation for linear regression with asymmetric errors |
title_fullStr |
Robust estimation for linear regression with asymmetric errors |
title_full_unstemmed |
Robust estimation for linear regression with asymmetric errors |
title_sort |
robust estimation for linear regression with asymmetric errors |
url |
http://hdl.handle.net/20.500.12110/paper_03195724_v33_n4_p511_Bianco |
work_keys_str_mv |
AT biancoam robustestimationforlinearregressionwithasymmetricerrors AT garciabenm robustestimationforlinearregressionwithasymmetricerrors AT yohaivj robustestimationforlinearregressionwithasymmetricerrors |
_version_ |
1807318051388915712 |