An O*(1.1939n) time algorithm for minimum weighted dominating induced matching
Say that an edge of a graph G dominates itself and every other edge sharing a vertex of it. An edge dominating set of a graph G = (V,E) is a subset of edges E′ ⊆ E which dominates all edges of G. In particular, if every edge of G is dominated by exactly one edge of E′ then E′ is a dominating induced...
Guardado en:
Autores principales: | Lin, M.C., Mizrahi, M.J., Szwarcfiter, J.L. |
---|---|
Formato: | SER |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03029743_v8283LNCS_n_p558_Lin |
Aporte de: |
Ejemplares similares
-
An O*(1.1939n) time algorithm for minimum weighted dominating induced matching
Publicado: (2013) -
Exact Algorithms for Minimum Weighted Dominating Induced Matching
por: Lin, M.C., et al. -
Exact Algorithms for Minimum Weighted Dominating Induced Matching
Publicado: (2017) -
Fast algorithms for some dominating induced matching problems
por: Lin, M.C., et al. -
O(n) time algorithms for dominating induced matching problems
por: Lin, M.C., et al.