Counting the changes of random Δ02 sets
Consider a Martin-Löf random Δ02 set Z. We give lower bounds for the number of changes of Zs|n for computable approximations of Z. We show that each nonempty Π0 1 class has a low member Z with a computable approximation that changes only o(2n ) times. We prove that each superlow ML-random set alread...
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Formato: | SER |
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_03029743_v6158LNCS_n_p162_Figueira |
| Aporte de: |
| id |
todo:paper_03029743_v6158LNCS_n_p162_Figueira |
|---|---|
| record_format |
dspace |
| spelling |
todo:paper_03029743_v6158LNCS_n_p162_Figueira2023-10-03T15:19:14Z Counting the changes of random Δ02 sets Figueira, S. Hirschfeldt, D. Miller, J.S. Ng, K.M. Nies, A. Lower bounds Random set Random processes Consider a Martin-Löf random Δ02 set Z. We give lower bounds for the number of changes of Zs|n for computable approximations of Z. We show that each nonempty Π0 1 class has a low member Z with a computable approximation that changes only o(2n ) times. We prove that each superlow ML-random set already satisfies a stronger randomness notion called balanced randomness, which implies that for each computable approximation and each constant c, there are infinitely many n such that Zs|n changes more than c2 n times. © 2010 Springer-Verlag Berlin Heidelberg. Fil:Figueira, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. SER info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_03029743_v6158LNCS_n_p162_Figueira |
| institution |
Universidad de Buenos Aires |
| institution_str |
I-28 |
| repository_str |
R-134 |
| collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
| topic |
Lower bounds Random set Random processes |
| spellingShingle |
Lower bounds Random set Random processes Figueira, S. Hirschfeldt, D. Miller, J.S. Ng, K.M. Nies, A. Counting the changes of random Δ02 sets |
| topic_facet |
Lower bounds Random set Random processes |
| description |
Consider a Martin-Löf random Δ02 set Z. We give lower bounds for the number of changes of Zs|n for computable approximations of Z. We show that each nonempty Π0 1 class has a low member Z with a computable approximation that changes only o(2n ) times. We prove that each superlow ML-random set already satisfies a stronger randomness notion called balanced randomness, which implies that for each computable approximation and each constant c, there are infinitely many n such that Zs|n changes more than c2 n times. © 2010 Springer-Verlag Berlin Heidelberg. |
| format |
SER |
| author |
Figueira, S. Hirschfeldt, D. Miller, J.S. Ng, K.M. Nies, A. |
| author_facet |
Figueira, S. Hirschfeldt, D. Miller, J.S. Ng, K.M. Nies, A. |
| author_sort |
Figueira, S. |
| title |
Counting the changes of random Δ02 sets |
| title_short |
Counting the changes of random Δ02 sets |
| title_full |
Counting the changes of random Δ02 sets |
| title_fullStr |
Counting the changes of random Δ02 sets |
| title_full_unstemmed |
Counting the changes of random Δ02 sets |
| title_sort |
counting the changes of random δ02 sets |
| url |
http://hdl.handle.net/20.500.12110/paper_03029743_v6158LNCS_n_p162_Figueira |
| work_keys_str_mv |
AT figueiras countingthechangesofrandomd02sets AT hirschfeldtd countingthechangesofrandomd02sets AT millerjs countingthechangesofrandomd02sets AT ngkm countingthechangesofrandomd02sets AT niesa countingthechangesofrandomd02sets |
| _version_ |
1807318535228096512 |