Estimation of the marginal location under a partially linear model with missing responses

In this paper, we consider a semiparametric partially linear regression model where there are missing data in the response. We propose robust Fisher-consistent estimators for the regression parameter, for the regression function and for the marginal location parameter of the response variable. A rob...

Descripción completa

Detalles Bibliográficos
Autores principales: Bianco, A., Boente, G., González-Manteiga, W., Pérez-González, A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_01679473_v54_n2_p546_Bianco
Aporte de:
id todo:paper_01679473_v54_n2_p546_Bianco
record_format dspace
spelling todo:paper_01679473_v54_n2_p546_Bianco2023-10-03T15:05:37Z Estimation of the marginal location under a partially linear model with missing responses Bianco, A. Boente, G. González-Manteiga, W. Pérez-González, A. Bandwidth parameters Consistent estimators Cross-validation methods Data sets Example based Linear regression models Location parameters Missing data Missing response Monte Carlo study Numerical results Partially linear models Regression function Regression parameters Semiparametric Linear regression Parameter estimation In this paper, we consider a semiparametric partially linear regression model where there are missing data in the response. We propose robust Fisher-consistent estimators for the regression parameter, for the regression function and for the marginal location parameter of the response variable. A robust cross-validation method is briefly discussed, although, from our numerical results, the marginal estimators seem not to be sensitive to the bandwidth parameter. Finally, a Monte Carlo study is carried out to compare the performance of the robust proposed estimators among themselves and also with the classical ones, for normal and contaminated samples, under different missing data models. An example based on a real data set is also discussed. © 2009 Elsevier B.V. All rights reserved. Fil:Bianco, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Boente, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_01679473_v54_n2_p546_Bianco
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Bandwidth parameters
Consistent estimators
Cross-validation methods
Data sets
Example based
Linear regression models
Location parameters
Missing data
Missing response
Monte Carlo study
Numerical results
Partially linear models
Regression function
Regression parameters
Semiparametric
Linear regression
Parameter estimation
spellingShingle Bandwidth parameters
Consistent estimators
Cross-validation methods
Data sets
Example based
Linear regression models
Location parameters
Missing data
Missing response
Monte Carlo study
Numerical results
Partially linear models
Regression function
Regression parameters
Semiparametric
Linear regression
Parameter estimation
Bianco, A.
Boente, G.
González-Manteiga, W.
Pérez-González, A.
Estimation of the marginal location under a partially linear model with missing responses
topic_facet Bandwidth parameters
Consistent estimators
Cross-validation methods
Data sets
Example based
Linear regression models
Location parameters
Missing data
Missing response
Monte Carlo study
Numerical results
Partially linear models
Regression function
Regression parameters
Semiparametric
Linear regression
Parameter estimation
description In this paper, we consider a semiparametric partially linear regression model where there are missing data in the response. We propose robust Fisher-consistent estimators for the regression parameter, for the regression function and for the marginal location parameter of the response variable. A robust cross-validation method is briefly discussed, although, from our numerical results, the marginal estimators seem not to be sensitive to the bandwidth parameter. Finally, a Monte Carlo study is carried out to compare the performance of the robust proposed estimators among themselves and also with the classical ones, for normal and contaminated samples, under different missing data models. An example based on a real data set is also discussed. © 2009 Elsevier B.V. All rights reserved.
format JOUR
author Bianco, A.
Boente, G.
González-Manteiga, W.
Pérez-González, A.
author_facet Bianco, A.
Boente, G.
González-Manteiga, W.
Pérez-González, A.
author_sort Bianco, A.
title Estimation of the marginal location under a partially linear model with missing responses
title_short Estimation of the marginal location under a partially linear model with missing responses
title_full Estimation of the marginal location under a partially linear model with missing responses
title_fullStr Estimation of the marginal location under a partially linear model with missing responses
title_full_unstemmed Estimation of the marginal location under a partially linear model with missing responses
title_sort estimation of the marginal location under a partially linear model with missing responses
url http://hdl.handle.net/20.500.12110/paper_01679473_v54_n2_p546_Bianco
work_keys_str_mv AT biancoa estimationofthemarginallocationunderapartiallylinearmodelwithmissingresponses
AT boenteg estimationofthemarginallocationunderapartiallylinearmodelwithmissingresponses
AT gonzalezmanteigaw estimationofthemarginallocationunderapartiallylinearmodelwithmissingresponses
AT perezgonzaleza estimationofthemarginallocationunderapartiallylinearmodelwithmissingresponses
_version_ 1807324237968441344