Robust estimation for nonparametric generalized regression

This paper focuses on nonparametric regression estimation for the parameters of a discrete or continuous distribution, such as the Poisson or Gamma distributions, when anomalous data are present. The proposal is a natural extension of robust methods developed in the setting of parametric generalized...

Descripción completa

Detalles Bibliográficos
Autores principales: Bianco, A.M., Boente, G., Sombielle, S.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_01677152_v81_n12_p1986_Bianco
Aporte de:
id todo:paper_01677152_v81_n12_p1986_Bianco
record_format dspace
spelling todo:paper_01677152_v81_n12_p1986_Bianco2023-10-03T15:05:15Z Robust estimation for nonparametric generalized regression Bianco, A.M. Boente, G. Sombielle, S. Asymptotic properties Nonparametric generalized regression Robust estimation Smoothing techniques This paper focuses on nonparametric regression estimation for the parameters of a discrete or continuous distribution, such as the Poisson or Gamma distributions, when anomalous data are present. The proposal is a natural extension of robust methods developed in the setting of parametric generalized linear models. Robust estimators bounding either large values of the deviance or of the Pearson residuals are introduced and their asymptotic behaviour is derived. Through a Monte Carlo study, for the Poisson and Gamma distributions, the finite properties of the proposed procedures are investigated and their performance is compared with that of the classical ones. A resistant cross-validation method to choose the smoothing parameter is also considered. © 2011 Elsevier B.V. Fil:Bianco, A.M. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Boente, G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_01677152_v81_n12_p1986_Bianco
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Asymptotic properties
Nonparametric generalized regression
Robust estimation
Smoothing techniques
spellingShingle Asymptotic properties
Nonparametric generalized regression
Robust estimation
Smoothing techniques
Bianco, A.M.
Boente, G.
Sombielle, S.
Robust estimation for nonparametric generalized regression
topic_facet Asymptotic properties
Nonparametric generalized regression
Robust estimation
Smoothing techniques
description This paper focuses on nonparametric regression estimation for the parameters of a discrete or continuous distribution, such as the Poisson or Gamma distributions, when anomalous data are present. The proposal is a natural extension of robust methods developed in the setting of parametric generalized linear models. Robust estimators bounding either large values of the deviance or of the Pearson residuals are introduced and their asymptotic behaviour is derived. Through a Monte Carlo study, for the Poisson and Gamma distributions, the finite properties of the proposed procedures are investigated and their performance is compared with that of the classical ones. A resistant cross-validation method to choose the smoothing parameter is also considered. © 2011 Elsevier B.V.
format JOUR
author Bianco, A.M.
Boente, G.
Sombielle, S.
author_facet Bianco, A.M.
Boente, G.
Sombielle, S.
author_sort Bianco, A.M.
title Robust estimation for nonparametric generalized regression
title_short Robust estimation for nonparametric generalized regression
title_full Robust estimation for nonparametric generalized regression
title_fullStr Robust estimation for nonparametric generalized regression
title_full_unstemmed Robust estimation for nonparametric generalized regression
title_sort robust estimation for nonparametric generalized regression
url http://hdl.handle.net/20.500.12110/paper_01677152_v81_n12_p1986_Bianco
work_keys_str_mv AT biancoam robustestimationfornonparametricgeneralizedregression
AT boenteg robustestimationfornonparametricgeneralizedregression
AT sombielles robustestimationfornonparametricgeneralizedregression
_version_ 1807316006910033920