Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism

We describe a new, faster and convenient method to study some metabolic characteristics - by the successful application of immobilized yeast cells (S. cerevisiae) in a microbial biosensor-like device. Microbial biosensors consist of microorganisms immobilized on the surface of a membrane or in a gel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Martínez, M., Hilding-Ohlsson, A., Viale, A.A., Cortón, E.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0165022X_v70_n3_p455_Martinez
Aporte de:
id todo:paper_0165022X_v70_n3_p455_Martinez
record_format dspace
spelling todo:paper_0165022X_v70_n3_p455_Martinez2023-10-03T15:02:32Z Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism Martínez, M. Hilding-Ohlsson, A. Viale, A.A. Cortón, E. Biosensors Cellular metabolism Facilitated diffusion Immobilization Michaelis-Menten kinetics Saccharomyces cerevisiae fructose galactose glucose sucrose xylose analytic method article biosensor carbohydrate transport carbon dioxide electrode cell metabolism controlled study device immobilized cell Michaelis constant nonhuman priority journal Saccharomyces cerevisiae Biosensing Techniques Carbohydrate Metabolism Carbon Dioxide Cells, Immobilized Electrodes Galactose Kinetics Membrane Transport Proteins Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins Saccharomyces cerevisiae We describe a new, faster and convenient method to study some metabolic characteristics - by the successful application of immobilized yeast cells (S. cerevisiae) in a microbial biosensor-like device. Microbial biosensors consist of microorganisms immobilized on the surface of a membrane or in a gel, in close contact with a transducer. Almost all works published to date have used biosensors for analyses in which a concentration-related property of the external medium is measured. A different approach is presented here; we have successfully used S. cerevisiae and a carbon dioxide electrode as the main components of a biosensor-like device, used as a proof of concept, for a system useful to characterize metabolic parameters of the microbial cells immobilized on a carbon dioxide electrode. The biosensor-like device we are presenting allows us to calculate Michaelis-Menten parameters related to the kinetics of transport and degradation of several carbohydrates (i.e., glucose, fructose, galactose, sucrose and xylose, with K m(app) of 6.0, 5.8, 0.9, 2.0, and 147 mM, respectively), and the study of the kinetics of expression of non-constitutive proteins related to the transport and degradation of galactose. © 2006 Elsevier B.V. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0165022X_v70_n3_p455_Martinez
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Biosensors
Cellular metabolism
Facilitated diffusion
Immobilization
Michaelis-Menten kinetics
Saccharomyces cerevisiae
fructose
galactose
glucose
sucrose
xylose
analytic method
article
biosensor
carbohydrate transport
carbon dioxide electrode
cell metabolism
controlled study
device
immobilized cell
Michaelis constant
nonhuman
priority journal
Saccharomyces cerevisiae
Biosensing Techniques
Carbohydrate Metabolism
Carbon Dioxide
Cells, Immobilized
Electrodes
Galactose
Kinetics
Membrane Transport Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Saccharomyces cerevisiae
spellingShingle Biosensors
Cellular metabolism
Facilitated diffusion
Immobilization
Michaelis-Menten kinetics
Saccharomyces cerevisiae
fructose
galactose
glucose
sucrose
xylose
analytic method
article
biosensor
carbohydrate transport
carbon dioxide electrode
cell metabolism
controlled study
device
immobilized cell
Michaelis constant
nonhuman
priority journal
Saccharomyces cerevisiae
Biosensing Techniques
Carbohydrate Metabolism
Carbon Dioxide
Cells, Immobilized
Electrodes
Galactose
Kinetics
Membrane Transport Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Saccharomyces cerevisiae
Martínez, M.
Hilding-Ohlsson, A.
Viale, A.A.
Cortón, E.
Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism
topic_facet Biosensors
Cellular metabolism
Facilitated diffusion
Immobilization
Michaelis-Menten kinetics
Saccharomyces cerevisiae
fructose
galactose
glucose
sucrose
xylose
analytic method
article
biosensor
carbohydrate transport
carbon dioxide electrode
cell metabolism
controlled study
device
immobilized cell
Michaelis constant
nonhuman
priority journal
Saccharomyces cerevisiae
Biosensing Techniques
Carbohydrate Metabolism
Carbon Dioxide
Cells, Immobilized
Electrodes
Galactose
Kinetics
Membrane Transport Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins
Saccharomyces cerevisiae
description We describe a new, faster and convenient method to study some metabolic characteristics - by the successful application of immobilized yeast cells (S. cerevisiae) in a microbial biosensor-like device. Microbial biosensors consist of microorganisms immobilized on the surface of a membrane or in a gel, in close contact with a transducer. Almost all works published to date have used biosensors for analyses in which a concentration-related property of the external medium is measured. A different approach is presented here; we have successfully used S. cerevisiae and a carbon dioxide electrode as the main components of a biosensor-like device, used as a proof of concept, for a system useful to characterize metabolic parameters of the microbial cells immobilized on a carbon dioxide electrode. The biosensor-like device we are presenting allows us to calculate Michaelis-Menten parameters related to the kinetics of transport and degradation of several carbohydrates (i.e., glucose, fructose, galactose, sucrose and xylose, with K m(app) of 6.0, 5.8, 0.9, 2.0, and 147 mM, respectively), and the study of the kinetics of expression of non-constitutive proteins related to the transport and degradation of galactose. © 2006 Elsevier B.V. All rights reserved.
format JOUR
author Martínez, M.
Hilding-Ohlsson, A.
Viale, A.A.
Cortón, E.
author_facet Martínez, M.
Hilding-Ohlsson, A.
Viale, A.A.
Cortón, E.
author_sort Martínez, M.
title Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism
title_short Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism
title_full Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism
title_fullStr Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism
title_full_unstemmed Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism
title_sort membrane entrapped saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism
url http://hdl.handle.net/20.500.12110/paper_0165022X_v70_n3_p455_Martinez
work_keys_str_mv AT martinezm membraneentrappedsaccharomycescerevisiaeinabiosensorlikedeviceasagenericrapidmethodtostudycellularmetabolism
AT hildingohlssona membraneentrappedsaccharomycescerevisiaeinabiosensorlikedeviceasagenericrapidmethodtostudycellularmetabolism
AT vialeaa membraneentrappedsaccharomycescerevisiaeinabiosensorlikedeviceasagenericrapidmethodtostudycellularmetabolism
AT cortone membraneentrappedsaccharomycescerevisiaeinabiosensorlikedeviceasagenericrapidmethodtostudycellularmetabolism
_version_ 1807317629180837888