Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism
We describe a new, faster and convenient method to study some metabolic characteristics - by the successful application of immobilized yeast cells (S. cerevisiae) in a microbial biosensor-like device. Microbial biosensors consist of microorganisms immobilized on the surface of a membrane or in a gel...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0165022X_v70_n3_p455_Martinez |
Aporte de: |
id |
todo:paper_0165022X_v70_n3_p455_Martinez |
---|---|
record_format |
dspace |
spelling |
todo:paper_0165022X_v70_n3_p455_Martinez2023-10-03T15:02:32Z Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism Martínez, M. Hilding-Ohlsson, A. Viale, A.A. Cortón, E. Biosensors Cellular metabolism Facilitated diffusion Immobilization Michaelis-Menten kinetics Saccharomyces cerevisiae fructose galactose glucose sucrose xylose analytic method article biosensor carbohydrate transport carbon dioxide electrode cell metabolism controlled study device immobilized cell Michaelis constant nonhuman priority journal Saccharomyces cerevisiae Biosensing Techniques Carbohydrate Metabolism Carbon Dioxide Cells, Immobilized Electrodes Galactose Kinetics Membrane Transport Proteins Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins Saccharomyces cerevisiae We describe a new, faster and convenient method to study some metabolic characteristics - by the successful application of immobilized yeast cells (S. cerevisiae) in a microbial biosensor-like device. Microbial biosensors consist of microorganisms immobilized on the surface of a membrane or in a gel, in close contact with a transducer. Almost all works published to date have used biosensors for analyses in which a concentration-related property of the external medium is measured. A different approach is presented here; we have successfully used S. cerevisiae and a carbon dioxide electrode as the main components of a biosensor-like device, used as a proof of concept, for a system useful to characterize metabolic parameters of the microbial cells immobilized on a carbon dioxide electrode. The biosensor-like device we are presenting allows us to calculate Michaelis-Menten parameters related to the kinetics of transport and degradation of several carbohydrates (i.e., glucose, fructose, galactose, sucrose and xylose, with K m(app) of 6.0, 5.8, 0.9, 2.0, and 147 mM, respectively), and the study of the kinetics of expression of non-constitutive proteins related to the transport and degradation of galactose. © 2006 Elsevier B.V. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0165022X_v70_n3_p455_Martinez |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Biosensors Cellular metabolism Facilitated diffusion Immobilization Michaelis-Menten kinetics Saccharomyces cerevisiae fructose galactose glucose sucrose xylose analytic method article biosensor carbohydrate transport carbon dioxide electrode cell metabolism controlled study device immobilized cell Michaelis constant nonhuman priority journal Saccharomyces cerevisiae Biosensing Techniques Carbohydrate Metabolism Carbon Dioxide Cells, Immobilized Electrodes Galactose Kinetics Membrane Transport Proteins Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins Saccharomyces cerevisiae |
spellingShingle |
Biosensors Cellular metabolism Facilitated diffusion Immobilization Michaelis-Menten kinetics Saccharomyces cerevisiae fructose galactose glucose sucrose xylose analytic method article biosensor carbohydrate transport carbon dioxide electrode cell metabolism controlled study device immobilized cell Michaelis constant nonhuman priority journal Saccharomyces cerevisiae Biosensing Techniques Carbohydrate Metabolism Carbon Dioxide Cells, Immobilized Electrodes Galactose Kinetics Membrane Transport Proteins Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins Saccharomyces cerevisiae Martínez, M. Hilding-Ohlsson, A. Viale, A.A. Cortón, E. Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism |
topic_facet |
Biosensors Cellular metabolism Facilitated diffusion Immobilization Michaelis-Menten kinetics Saccharomyces cerevisiae fructose galactose glucose sucrose xylose analytic method article biosensor carbohydrate transport carbon dioxide electrode cell metabolism controlled study device immobilized cell Michaelis constant nonhuman priority journal Saccharomyces cerevisiae Biosensing Techniques Carbohydrate Metabolism Carbon Dioxide Cells, Immobilized Electrodes Galactose Kinetics Membrane Transport Proteins Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins Saccharomyces cerevisiae |
description |
We describe a new, faster and convenient method to study some metabolic characteristics - by the successful application of immobilized yeast cells (S. cerevisiae) in a microbial biosensor-like device. Microbial biosensors consist of microorganisms immobilized on the surface of a membrane or in a gel, in close contact with a transducer. Almost all works published to date have used biosensors for analyses in which a concentration-related property of the external medium is measured. A different approach is presented here; we have successfully used S. cerevisiae and a carbon dioxide electrode as the main components of a biosensor-like device, used as a proof of concept, for a system useful to characterize metabolic parameters of the microbial cells immobilized on a carbon dioxide electrode. The biosensor-like device we are presenting allows us to calculate Michaelis-Menten parameters related to the kinetics of transport and degradation of several carbohydrates (i.e., glucose, fructose, galactose, sucrose and xylose, with K m(app) of 6.0, 5.8, 0.9, 2.0, and 147 mM, respectively), and the study of the kinetics of expression of non-constitutive proteins related to the transport and degradation of galactose. © 2006 Elsevier B.V. All rights reserved. |
format |
JOUR |
author |
Martínez, M. Hilding-Ohlsson, A. Viale, A.A. Cortón, E. |
author_facet |
Martínez, M. Hilding-Ohlsson, A. Viale, A.A. Cortón, E. |
author_sort |
Martínez, M. |
title |
Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism |
title_short |
Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism |
title_full |
Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism |
title_fullStr |
Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism |
title_full_unstemmed |
Membrane entrapped Saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism |
title_sort |
membrane entrapped saccharomyces cerevisiae in a biosensor-like device as a generic rapid method to study cellular metabolism |
url |
http://hdl.handle.net/20.500.12110/paper_0165022X_v70_n3_p455_Martinez |
work_keys_str_mv |
AT martinezm membraneentrappedsaccharomycescerevisiaeinabiosensorlikedeviceasagenericrapidmethodtostudycellularmetabolism AT hildingohlssona membraneentrappedsaccharomycescerevisiaeinabiosensorlikedeviceasagenericrapidmethodtostudycellularmetabolism AT vialeaa membraneentrappedsaccharomycescerevisiaeinabiosensorlikedeviceasagenericrapidmethodtostudycellularmetabolism AT cortone membraneentrappedsaccharomycescerevisiaeinabiosensorlikedeviceasagenericrapidmethodtostudycellularmetabolism |
_version_ |
1807317629180837888 |