Projection estimators for generalized linear models

We introduce a new class of robust estimators for generalized linear models which is an extension of the class of projection estimators for linear regression. These projection estimators are defined using an initial robust estimator for a generalized linear model with only one unknown parameter. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Bergesio, A., Yohai, V.J.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_01621459_v106_n494_p661_Bergesio
Aporte de:
id todo:paper_01621459_v106_n494_p661_Bergesio
record_format dspace
spelling todo:paper_01621459_v106_n494_p661_Bergesio2023-10-03T15:01:31Z Projection estimators for generalized linear models Bergesio, A. Yohai, V.J. Logistic regression Maximum bias One-step estimators Robust estimators We introduce a new class of robust estimators for generalized linear models which is an extension of the class of projection estimators for linear regression. These projection estimators are defined using an initial robust estimator for a generalized linear model with only one unknown parameter. We found a bound for the maximum asymptotic bias of the projection estimator caused by a fraction ε of outlier contamination. For small ε, this bias is approximately twice the maximum bias of the initial estimator independently of the number of regressors. Since these projection estimators are not asymptotically normal, we define one-step weighted M-estimators starting at the projection estimators. These estimators have the same asymptotic normal distribution as the M-estimator and a degree of robustness close to the one of the projection estimator. We perform a Monte Carlo simulation for the case of binomial and Poisson regression with canonical links. This study shows that the proposed estimators compare favorably with respect to other robust estimators. Supplemental Material containing the proofs and the numerical algorithm used to compute the P-estimator is available online. © 2011 American Statistical Association. Fil:Bergesio, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_01621459_v106_n494_p661_Bergesio
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Logistic regression
Maximum bias
One-step estimators
Robust estimators
spellingShingle Logistic regression
Maximum bias
One-step estimators
Robust estimators
Bergesio, A.
Yohai, V.J.
Projection estimators for generalized linear models
topic_facet Logistic regression
Maximum bias
One-step estimators
Robust estimators
description We introduce a new class of robust estimators for generalized linear models which is an extension of the class of projection estimators for linear regression. These projection estimators are defined using an initial robust estimator for a generalized linear model with only one unknown parameter. We found a bound for the maximum asymptotic bias of the projection estimator caused by a fraction ε of outlier contamination. For small ε, this bias is approximately twice the maximum bias of the initial estimator independently of the number of regressors. Since these projection estimators are not asymptotically normal, we define one-step weighted M-estimators starting at the projection estimators. These estimators have the same asymptotic normal distribution as the M-estimator and a degree of robustness close to the one of the projection estimator. We perform a Monte Carlo simulation for the case of binomial and Poisson regression with canonical links. This study shows that the proposed estimators compare favorably with respect to other robust estimators. Supplemental Material containing the proofs and the numerical algorithm used to compute the P-estimator is available online. © 2011 American Statistical Association.
format JOUR
author Bergesio, A.
Yohai, V.J.
author_facet Bergesio, A.
Yohai, V.J.
author_sort Bergesio, A.
title Projection estimators for generalized linear models
title_short Projection estimators for generalized linear models
title_full Projection estimators for generalized linear models
title_fullStr Projection estimators for generalized linear models
title_full_unstemmed Projection estimators for generalized linear models
title_sort projection estimators for generalized linear models
url http://hdl.handle.net/20.500.12110/paper_01621459_v106_n494_p661_Bergesio
work_keys_str_mv AT bergesioa projectionestimatorsforgeneralizedlinearmodels
AT yohaivj projectionestimatorsforgeneralizedlinearmodels
_version_ 1807320783112896512