A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights
In this paper we study an inverse problem for weighted second order Sturm-Liouville equations. We show that the zeros of any subsequence of eigenfunctions, or a dense set of nodes, are enough to determine the weight. We impose weaker hypotheses for positive weights, and we generalize the proof to in...
Guardado en:
Autores principales: | Pinasco, J.P., Scarola, C. |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00963003_v256_n_p819_Pinasco |
Aporte de: |
Ejemplares similares
-
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights
por: Pinasco, Juan Pablo
Publicado: (2015) -
Lecciones sobre métodos y resultados básicos de la teoría de Sturm-Liouville y algunas de sus generalizaciones /
por: Benedek, Agnes Ilona
Publicado: (1985) -
La distribución de los autovalores del problema de Dirichlet del operador diferencial bidimensional de Sturm-Liouville : teoremas asintóticos de Herman Weyl y de Torsten Carleman. /
por: Benedek, Agnes Ilona
Publicado: (2011) -
A nodal inverse problem for a quasi-linear ordinary differential equation in the half-line
por: Pinasco, J.P., et al. -
On certain non harmonic Fourier expansions as eigenfunction expansions of non regular Sturm-Liouville systems /
por: Benedek, Agnes Ilona
Publicado: (1974)