A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights

In this paper we study an inverse problem for weighted second order Sturm-Liouville equations. We show that the zeros of any subsequence of eigenfunctions, or a dense set of nodes, are enough to determine the weight. We impose weaker hypotheses for positive weights, and we generalize the proof to in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pinasco, J.P., Scarola, C.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00963003_v256_n_p819_Pinasco
Aporte de:
id todo:paper_00963003_v256_n_p819_Pinasco
record_format dspace
spelling todo:paper_00963003_v256_n_p819_Pinasco2023-10-03T14:56:45Z A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights Pinasco, J.P. Scarola, C. Eigenvalues Indefinite weights Inverse problems Nodal points Differential equations Eigenvalues and eigenfunctions Liouville equation Eigenvalues Indefinite weights Nodal points Second orders Shooting methods Sturm-Liouville equation Sturm-Liouville operators Inverse problems In this paper we study an inverse problem for weighted second order Sturm-Liouville equations. We show that the zeros of any subsequence of eigenfunctions, or a dense set of nodes, are enough to determine the weight. We impose weaker hypotheses for positive weights, and we generalize the proof to include indefinite weights. Moreover, the parameters in the boundary conditions can be determined numerically by using a shooting method. © 2015 Elsevier Inc. All rights reserved. Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00963003_v256_n_p819_Pinasco
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Eigenvalues
Indefinite weights
Inverse problems
Nodal points
Differential equations
Eigenvalues and eigenfunctions
Liouville equation
Eigenvalues
Indefinite weights
Nodal points
Second orders
Shooting methods
Sturm-Liouville equation
Sturm-Liouville operators
Inverse problems
spellingShingle Eigenvalues
Indefinite weights
Inverse problems
Nodal points
Differential equations
Eigenvalues and eigenfunctions
Liouville equation
Eigenvalues
Indefinite weights
Nodal points
Second orders
Shooting methods
Sturm-Liouville equation
Sturm-Liouville operators
Inverse problems
Pinasco, J.P.
Scarola, C.
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights
topic_facet Eigenvalues
Indefinite weights
Inverse problems
Nodal points
Differential equations
Eigenvalues and eigenfunctions
Liouville equation
Eigenvalues
Indefinite weights
Nodal points
Second orders
Shooting methods
Sturm-Liouville equation
Sturm-Liouville operators
Inverse problems
description In this paper we study an inverse problem for weighted second order Sturm-Liouville equations. We show that the zeros of any subsequence of eigenfunctions, or a dense set of nodes, are enough to determine the weight. We impose weaker hypotheses for positive weights, and we generalize the proof to include indefinite weights. Moreover, the parameters in the boundary conditions can be determined numerically by using a shooting method. © 2015 Elsevier Inc. All rights reserved.
format JOUR
author Pinasco, J.P.
Scarola, C.
author_facet Pinasco, J.P.
Scarola, C.
author_sort Pinasco, J.P.
title A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights
title_short A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights
title_full A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights
title_fullStr A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights
title_full_unstemmed A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights
title_sort nodal inverse problem for second order sturm-liouville operators with indefinite weights
url http://hdl.handle.net/20.500.12110/paper_00963003_v256_n_p819_Pinasco
work_keys_str_mv AT pinascojp anodalinverseproblemforsecondordersturmliouvilleoperatorswithindefiniteweights
AT scarolac anodalinverseproblemforsecondordersturmliouvilleoperatorswithindefiniteweights
AT pinascojp nodalinverseproblemforsecondordersturmliouvilleoperatorswithindefiniteweights
AT scarolac nodalinverseproblemforsecondordersturmliouvilleoperatorswithindefiniteweights
_version_ 1807324589085163520