A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights
In this paper we study an inverse problem for weighted second order Sturm-Liouville equations. We show that the zeros of any subsequence of eigenfunctions, or a dense set of nodes, are enough to determine the weight. We impose weaker hypotheses for positive weights, and we generalize the proof to in...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00963003_v256_n_p819_Pinasco |
Aporte de: |
id |
todo:paper_00963003_v256_n_p819_Pinasco |
---|---|
record_format |
dspace |
spelling |
todo:paper_00963003_v256_n_p819_Pinasco2023-10-03T14:56:45Z A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights Pinasco, J.P. Scarola, C. Eigenvalues Indefinite weights Inverse problems Nodal points Differential equations Eigenvalues and eigenfunctions Liouville equation Eigenvalues Indefinite weights Nodal points Second orders Shooting methods Sturm-Liouville equation Sturm-Liouville operators Inverse problems In this paper we study an inverse problem for weighted second order Sturm-Liouville equations. We show that the zeros of any subsequence of eigenfunctions, or a dense set of nodes, are enough to determine the weight. We impose weaker hypotheses for positive weights, and we generalize the proof to include indefinite weights. Moreover, the parameters in the boundary conditions can be determined numerically by using a shooting method. © 2015 Elsevier Inc. All rights reserved. Fil:Pinasco, J.P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00963003_v256_n_p819_Pinasco |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Eigenvalues Indefinite weights Inverse problems Nodal points Differential equations Eigenvalues and eigenfunctions Liouville equation Eigenvalues Indefinite weights Nodal points Second orders Shooting methods Sturm-Liouville equation Sturm-Liouville operators Inverse problems |
spellingShingle |
Eigenvalues Indefinite weights Inverse problems Nodal points Differential equations Eigenvalues and eigenfunctions Liouville equation Eigenvalues Indefinite weights Nodal points Second orders Shooting methods Sturm-Liouville equation Sturm-Liouville operators Inverse problems Pinasco, J.P. Scarola, C. A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights |
topic_facet |
Eigenvalues Indefinite weights Inverse problems Nodal points Differential equations Eigenvalues and eigenfunctions Liouville equation Eigenvalues Indefinite weights Nodal points Second orders Shooting methods Sturm-Liouville equation Sturm-Liouville operators Inverse problems |
description |
In this paper we study an inverse problem for weighted second order Sturm-Liouville equations. We show that the zeros of any subsequence of eigenfunctions, or a dense set of nodes, are enough to determine the weight. We impose weaker hypotheses for positive weights, and we generalize the proof to include indefinite weights. Moreover, the parameters in the boundary conditions can be determined numerically by using a shooting method. © 2015 Elsevier Inc. All rights reserved. |
format |
JOUR |
author |
Pinasco, J.P. Scarola, C. |
author_facet |
Pinasco, J.P. Scarola, C. |
author_sort |
Pinasco, J.P. |
title |
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights |
title_short |
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights |
title_full |
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights |
title_fullStr |
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights |
title_full_unstemmed |
A nodal inverse problem for second order Sturm-Liouville operators with indefinite weights |
title_sort |
nodal inverse problem for second order sturm-liouville operators with indefinite weights |
url |
http://hdl.handle.net/20.500.12110/paper_00963003_v256_n_p819_Pinasco |
work_keys_str_mv |
AT pinascojp anodalinverseproblemforsecondordersturmliouvilleoperatorswithindefiniteweights AT scarolac anodalinverseproblemforsecondordersturmliouvilleoperatorswithindefiniteweights AT pinascojp nodalinverseproblemforsecondordersturmliouvilleoperatorswithindefiniteweights AT scarolac nodalinverseproblemforsecondordersturmliouvilleoperatorswithindefiniteweights |
_version_ |
1807324589085163520 |