Symmetric interpolation, Exchange Lemma and Sylvester sums

The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 185...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Krick, T., Szanto, A., Valdettaro, M.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00927872_v45_n8_p3231_Krick
Aporte de:
id todo:paper_00927872_v45_n8_p3231_Krick
record_format dspace
spelling todo:paper_00927872_v45_n8_p3231_Krick2023-10-03T14:55:17Z Symmetric interpolation, Exchange Lemma and Sylvester sums Krick, T. Szanto, A. Valdettaro, M. Subresultants Sylvester double sums symmetric Lagrange interpolation The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients. © 2017 Taylor & Francis. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00927872_v45_n8_p3231_Krick
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Subresultants
Sylvester double sums
symmetric Lagrange interpolation
spellingShingle Subresultants
Sylvester double sums
symmetric Lagrange interpolation
Krick, T.
Szanto, A.
Valdettaro, M.
Symmetric interpolation, Exchange Lemma and Sylvester sums
topic_facet Subresultants
Sylvester double sums
symmetric Lagrange interpolation
description The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients. © 2017 Taylor & Francis.
format JOUR
author Krick, T.
Szanto, A.
Valdettaro, M.
author_facet Krick, T.
Szanto, A.
Valdettaro, M.
author_sort Krick, T.
title Symmetric interpolation, Exchange Lemma and Sylvester sums
title_short Symmetric interpolation, Exchange Lemma and Sylvester sums
title_full Symmetric interpolation, Exchange Lemma and Sylvester sums
title_fullStr Symmetric interpolation, Exchange Lemma and Sylvester sums
title_full_unstemmed Symmetric interpolation, Exchange Lemma and Sylvester sums
title_sort symmetric interpolation, exchange lemma and sylvester sums
url http://hdl.handle.net/20.500.12110/paper_00927872_v45_n8_p3231_Krick
work_keys_str_mv AT krickt symmetricinterpolationexchangelemmaandsylvestersums
AT szantoa symmetricinterpolationexchangelemmaandsylvestersums
AT valdettarom symmetricinterpolationexchangelemmaandsylvestersums
_version_ 1807315586334588928