Symmetric interpolation, Exchange Lemma and Sylvester sums
The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 185...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00927872_v45_n8_p3231_Krick |
Aporte de: |
id |
todo:paper_00927872_v45_n8_p3231_Krick |
---|---|
record_format |
dspace |
spelling |
todo:paper_00927872_v45_n8_p3231_Krick2023-10-03T14:55:17Z Symmetric interpolation, Exchange Lemma and Sylvester sums Krick, T. Szanto, A. Valdettaro, M. Subresultants Sylvester double sums symmetric Lagrange interpolation The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients. © 2017 Taylor & Francis. Fil:Krick, T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00927872_v45_n8_p3231_Krick |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Subresultants Sylvester double sums symmetric Lagrange interpolation |
spellingShingle |
Subresultants Sylvester double sums symmetric Lagrange interpolation Krick, T. Szanto, A. Valdettaro, M. Symmetric interpolation, Exchange Lemma and Sylvester sums |
topic_facet |
Subresultants Sylvester double sums symmetric Lagrange interpolation |
description |
The theory of symmetric multivariate Lagrange interpolation is a beautiful but rather unknown tool that has many applications. Here we derive from it an Exchange Lemma that allows to explain in a simple and natural way the full description of the double sum expressions introduced by Sylvester in 1853 in terms of subresultants and their Bézout coefficients. © 2017 Taylor & Francis. |
format |
JOUR |
author |
Krick, T. Szanto, A. Valdettaro, M. |
author_facet |
Krick, T. Szanto, A. Valdettaro, M. |
author_sort |
Krick, T. |
title |
Symmetric interpolation, Exchange Lemma and Sylvester sums |
title_short |
Symmetric interpolation, Exchange Lemma and Sylvester sums |
title_full |
Symmetric interpolation, Exchange Lemma and Sylvester sums |
title_fullStr |
Symmetric interpolation, Exchange Lemma and Sylvester sums |
title_full_unstemmed |
Symmetric interpolation, Exchange Lemma and Sylvester sums |
title_sort |
symmetric interpolation, exchange lemma and sylvester sums |
url |
http://hdl.handle.net/20.500.12110/paper_00927872_v45_n8_p3231_Krick |
work_keys_str_mv |
AT krickt symmetricinterpolationexchangelemmaandsylvestersums AT szantoa symmetricinterpolationexchangelemmaandsylvestersums AT valdettarom symmetricinterpolationexchangelemmaandsylvestersums |
_version_ |
1807315586334588928 |