Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids

A set of triterpenoids with different grades of oxidation in the lupane skeleton were prepared and evaluated as cholinesterase inhibitors. Allylic oxidation with selenium oxide and Jones's oxidation were employed to obtain mono-, di- and tri-oxolupanes, starting from calenduladiol (1) and lupeo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Castro, M.J., Richmond, V., Faraoni, M.B., Murray, A.P.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00452068_v79_n_p301_Castro
Aporte de:
id todo:paper_00452068_v79_n_p301_Castro
record_format dspace
spelling todo:paper_00452068_v79_n_p301_Castro2023-10-03T14:51:54Z Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids Castro, M.J. Richmond, V. Faraoni, M.B. Murray, A.P. Cholinesterase inhibitors Lupane derivatives Molecular modeling Triterpenoids 16beta hydroxy 3 oxo lup 1,20(29) dien 30 al 16beta hydroxy 3 oxo lup 20(29) en 30 al 16beta hydroxy lup 20(29) en 3 one 3 oxo lup 20(29) en 30 al 3,16 dioxo lup 20(29) en 30 al 3,16 dioxo lup 20(29) ene 3beta hydroxy 16 oxo lup 20(29) en 30 al 3beta hydroxy lup 20(29) en 16 one 3beta hydroxy lup 20(29) en 30 al 3beta,16beta dihydroxy lup 20(29) en 30 al calenduladiol cholinesterase inhibitor lup 20(29) en 3 one lupeol natural product selenium oxide triterpene unclassified drug acetylcholinesterase cholinesterase cholinesterase inhibitor lupane triterpene Acacia Acacia cedilloi Article carbon nuclear magnetic resonance cholinesterase inhibition column chromatography competitive inhibition drug synthesis enzyme activity enzyme inhibitor complex hydrogen bond IC50 mass spectrometry molecular docking molecular dynamics molecular model nonhuman oxidation priority journal proton nuclear magnetic resonance animal chemical structure chemistry dose response human metabolism oxidation reduction reaction structure activity relation synthesis Torpedo Acetylcholinesterase Animals Butyrylcholinesterase Cholinesterase Inhibitors Dose-Response Relationship, Drug Humans Molecular Docking Simulation Molecular Structure Oxidation-Reduction Structure-Activity Relationship Torpedo Triterpenes A set of triterpenoids with different grades of oxidation in the lupane skeleton were prepared and evaluated as cholinesterase inhibitors. Allylic oxidation with selenium oxide and Jones's oxidation were employed to obtain mono-, di- and tri-oxolupanes, starting from calenduladiol (1) and lupeol (3). All the derivatives showed a selective inhibition of butyrylcholinesterase over acetylcholinesterase (BChE vs. AChE). A kinetic study proved that compounds 2 and 9, the more potent inhibitors of the series, act as competitive inhibitors. Molecular modeling was used to understand their interaction with BChE, the role of carbonyl at C-16 and the selectivity towards this enzyme over AChE. These results indicate that oxidation at C-16 of the lupane skeleton is a key transformation in order to improve the cholinesterase inhibition of these compounds. © 2018 Elsevier Inc. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00452068_v79_n_p301_Castro
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Cholinesterase inhibitors
Lupane derivatives
Molecular modeling
Triterpenoids
16beta hydroxy 3 oxo lup 1,20(29) dien 30 al
16beta hydroxy 3 oxo lup 20(29) en 30 al
16beta hydroxy lup 20(29) en 3 one
3 oxo lup 20(29) en 30 al
3,16 dioxo lup 20(29) en 30 al
3,16 dioxo lup 20(29) ene
3beta hydroxy 16 oxo lup 20(29) en 30 al
3beta hydroxy lup 20(29) en 16 one
3beta hydroxy lup 20(29) en 30 al
3beta,16beta dihydroxy lup 20(29) en 30 al
calenduladiol
cholinesterase inhibitor
lup 20(29) en 3 one
lupeol
natural product
selenium oxide
triterpene
unclassified drug
acetylcholinesterase
cholinesterase
cholinesterase inhibitor
lupane
triterpene
Acacia
Acacia cedilloi
Article
carbon nuclear magnetic resonance
cholinesterase inhibition
column chromatography
competitive inhibition
drug synthesis
enzyme activity
enzyme inhibitor complex
hydrogen bond
IC50
mass spectrometry
molecular docking
molecular dynamics
molecular model
nonhuman
oxidation
priority journal
proton nuclear magnetic resonance
animal
chemical structure
chemistry
dose response
human
metabolism
oxidation reduction reaction
structure activity relation
synthesis
Torpedo
Acetylcholinesterase
Animals
Butyrylcholinesterase
Cholinesterase Inhibitors
Dose-Response Relationship, Drug
Humans
Molecular Docking Simulation
Molecular Structure
Oxidation-Reduction
Structure-Activity Relationship
Torpedo
Triterpenes
spellingShingle Cholinesterase inhibitors
Lupane derivatives
Molecular modeling
Triterpenoids
16beta hydroxy 3 oxo lup 1,20(29) dien 30 al
16beta hydroxy 3 oxo lup 20(29) en 30 al
16beta hydroxy lup 20(29) en 3 one
3 oxo lup 20(29) en 30 al
3,16 dioxo lup 20(29) en 30 al
3,16 dioxo lup 20(29) ene
3beta hydroxy 16 oxo lup 20(29) en 30 al
3beta hydroxy lup 20(29) en 16 one
3beta hydroxy lup 20(29) en 30 al
3beta,16beta dihydroxy lup 20(29) en 30 al
calenduladiol
cholinesterase inhibitor
lup 20(29) en 3 one
lupeol
natural product
selenium oxide
triterpene
unclassified drug
acetylcholinesterase
cholinesterase
cholinesterase inhibitor
lupane
triterpene
Acacia
Acacia cedilloi
Article
carbon nuclear magnetic resonance
cholinesterase inhibition
column chromatography
competitive inhibition
drug synthesis
enzyme activity
enzyme inhibitor complex
hydrogen bond
IC50
mass spectrometry
molecular docking
molecular dynamics
molecular model
nonhuman
oxidation
priority journal
proton nuclear magnetic resonance
animal
chemical structure
chemistry
dose response
human
metabolism
oxidation reduction reaction
structure activity relation
synthesis
Torpedo
Acetylcholinesterase
Animals
Butyrylcholinesterase
Cholinesterase Inhibitors
Dose-Response Relationship, Drug
Humans
Molecular Docking Simulation
Molecular Structure
Oxidation-Reduction
Structure-Activity Relationship
Torpedo
Triterpenes
Castro, M.J.
Richmond, V.
Faraoni, M.B.
Murray, A.P.
Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids
topic_facet Cholinesterase inhibitors
Lupane derivatives
Molecular modeling
Triterpenoids
16beta hydroxy 3 oxo lup 1,20(29) dien 30 al
16beta hydroxy 3 oxo lup 20(29) en 30 al
16beta hydroxy lup 20(29) en 3 one
3 oxo lup 20(29) en 30 al
3,16 dioxo lup 20(29) en 30 al
3,16 dioxo lup 20(29) ene
3beta hydroxy 16 oxo lup 20(29) en 30 al
3beta hydroxy lup 20(29) en 16 one
3beta hydroxy lup 20(29) en 30 al
3beta,16beta dihydroxy lup 20(29) en 30 al
calenduladiol
cholinesterase inhibitor
lup 20(29) en 3 one
lupeol
natural product
selenium oxide
triterpene
unclassified drug
acetylcholinesterase
cholinesterase
cholinesterase inhibitor
lupane
triterpene
Acacia
Acacia cedilloi
Article
carbon nuclear magnetic resonance
cholinesterase inhibition
column chromatography
competitive inhibition
drug synthesis
enzyme activity
enzyme inhibitor complex
hydrogen bond
IC50
mass spectrometry
molecular docking
molecular dynamics
molecular model
nonhuman
oxidation
priority journal
proton nuclear magnetic resonance
animal
chemical structure
chemistry
dose response
human
metabolism
oxidation reduction reaction
structure activity relation
synthesis
Torpedo
Acetylcholinesterase
Animals
Butyrylcholinesterase
Cholinesterase Inhibitors
Dose-Response Relationship, Drug
Humans
Molecular Docking Simulation
Molecular Structure
Oxidation-Reduction
Structure-Activity Relationship
Torpedo
Triterpenes
description A set of triterpenoids with different grades of oxidation in the lupane skeleton were prepared and evaluated as cholinesterase inhibitors. Allylic oxidation with selenium oxide and Jones's oxidation were employed to obtain mono-, di- and tri-oxolupanes, starting from calenduladiol (1) and lupeol (3). All the derivatives showed a selective inhibition of butyrylcholinesterase over acetylcholinesterase (BChE vs. AChE). A kinetic study proved that compounds 2 and 9, the more potent inhibitors of the series, act as competitive inhibitors. Molecular modeling was used to understand their interaction with BChE, the role of carbonyl at C-16 and the selectivity towards this enzyme over AChE. These results indicate that oxidation at C-16 of the lupane skeleton is a key transformation in order to improve the cholinesterase inhibition of these compounds. © 2018 Elsevier Inc.
format JOUR
author Castro, M.J.
Richmond, V.
Faraoni, M.B.
Murray, A.P.
author_facet Castro, M.J.
Richmond, V.
Faraoni, M.B.
Murray, A.P.
author_sort Castro, M.J.
title Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids
title_short Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids
title_full Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids
title_fullStr Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids
title_full_unstemmed Oxidation at C-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids
title_sort oxidation at c-16 enhances butyrylcholinesterase inhibition in lupane triterpenoids
url http://hdl.handle.net/20.500.12110/paper_00452068_v79_n_p301_Castro
work_keys_str_mv AT castromj oxidationatc16enhancesbutyrylcholinesteraseinhibitioninlupanetriterpenoids
AT richmondv oxidationatc16enhancesbutyrylcholinesteraseinhibitioninlupanetriterpenoids
AT faraonimb oxidationatc16enhancesbutyrylcholinesteraseinhibitioninlupanetriterpenoids
AT murrayap oxidationatc16enhancesbutyrylcholinesteraseinhibitioninlupanetriterpenoids
_version_ 1807318179110715392