Shift-modulation invariant spaces on LCA groups
A (K;?) shift-modulation invariant space is a subspace of L 2(G) that is invariant under translations along elements in K and modulations by elements in ?. Here G is a locally compact abelian group, and K and ? are closed subgroups of G and the dual group ^ G, respectively. We provide a characteriza...
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00393223_v211_n1_p1_Cabrelli |
Aporte de: |
id |
todo:paper_00393223_v211_n1_p1_Cabrelli |
---|---|
record_format |
dspace |
spelling |
todo:paper_00393223_v211_n1_p1_Cabrelli2023-10-03T14:49:46Z Shift-modulation invariant spaces on LCA groups Cabrelli, C. Paternostro, V. Fibers. LCA groups Range functions Shift-modulation invariant space A (K;?) shift-modulation invariant space is a subspace of L 2(G) that is invariant under translations along elements in K and modulations by elements in ?. Here G is a locally compact abelian group, and K and ? are closed subgroups of G and the dual group ^ G, respectively. We provide a characterization of shift-modulation invariant spaces when K and ? are uniform lattices. This extends previous results known for L 2(R d). We develop berization techniques and suitable range functions adapted to LCA groups needed to provide the desired characterization. © Instytut Matematyczny PAN, 2012. Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Paternostro, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00393223_v211_n1_p1_Cabrelli |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Fibers. LCA groups Range functions Shift-modulation invariant space |
spellingShingle |
Fibers. LCA groups Range functions Shift-modulation invariant space Cabrelli, C. Paternostro, V. Shift-modulation invariant spaces on LCA groups |
topic_facet |
Fibers. LCA groups Range functions Shift-modulation invariant space |
description |
A (K;?) shift-modulation invariant space is a subspace of L 2(G) that is invariant under translations along elements in K and modulations by elements in ?. Here G is a locally compact abelian group, and K and ? are closed subgroups of G and the dual group ^ G, respectively. We provide a characterization of shift-modulation invariant spaces when K and ? are uniform lattices. This extends previous results known for L 2(R d). We develop berization techniques and suitable range functions adapted to LCA groups needed to provide the desired characterization. © Instytut Matematyczny PAN, 2012. |
format |
JOUR |
author |
Cabrelli, C. Paternostro, V. |
author_facet |
Cabrelli, C. Paternostro, V. |
author_sort |
Cabrelli, C. |
title |
Shift-modulation invariant spaces on LCA groups |
title_short |
Shift-modulation invariant spaces on LCA groups |
title_full |
Shift-modulation invariant spaces on LCA groups |
title_fullStr |
Shift-modulation invariant spaces on LCA groups |
title_full_unstemmed |
Shift-modulation invariant spaces on LCA groups |
title_sort |
shift-modulation invariant spaces on lca groups |
url |
http://hdl.handle.net/20.500.12110/paper_00393223_v211_n1_p1_Cabrelli |
work_keys_str_mv |
AT cabrellic shiftmodulationinvariantspacesonlcagroups AT paternostrov shiftmodulationinvariantspacesonlcagroups |
_version_ |
1807317486645805056 |