Shift-modulation invariant spaces on LCA groups
A (K;?) shift-modulation invariant space is a subspace of L 2(G) that is invariant under translations along elements in K and modulations by elements in ?. Here G is a locally compact abelian group, and K and ? are closed subgroups of G and the dual group ^ G, respectively. We provide a characteriza...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | JOUR |
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00393223_v211_n1_p1_Cabrelli |
| Aporte de: |
| id |
todo:paper_00393223_v211_n1_p1_Cabrelli |
|---|---|
| record_format |
dspace |
| spelling |
todo:paper_00393223_v211_n1_p1_Cabrelli2023-10-03T14:49:46Z Shift-modulation invariant spaces on LCA groups Cabrelli, C. Paternostro, V. Fibers. LCA groups Range functions Shift-modulation invariant space A (K;?) shift-modulation invariant space is a subspace of L 2(G) that is invariant under translations along elements in K and modulations by elements in ?. Here G is a locally compact abelian group, and K and ? are closed subgroups of G and the dual group ^ G, respectively. We provide a characterization of shift-modulation invariant spaces when K and ? are uniform lattices. This extends previous results known for L 2(R d). We develop berization techniques and suitable range functions adapted to LCA groups needed to provide the desired characterization. © Instytut Matematyczny PAN, 2012. Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Paternostro, V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00393223_v211_n1_p1_Cabrelli |
| institution |
Universidad de Buenos Aires |
| institution_str |
I-28 |
| repository_str |
R-134 |
| collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
| topic |
Fibers. LCA groups Range functions Shift-modulation invariant space |
| spellingShingle |
Fibers. LCA groups Range functions Shift-modulation invariant space Cabrelli, C. Paternostro, V. Shift-modulation invariant spaces on LCA groups |
| topic_facet |
Fibers. LCA groups Range functions Shift-modulation invariant space |
| description |
A (K;?) shift-modulation invariant space is a subspace of L 2(G) that is invariant under translations along elements in K and modulations by elements in ?. Here G is a locally compact abelian group, and K and ? are closed subgroups of G and the dual group ^ G, respectively. We provide a characterization of shift-modulation invariant spaces when K and ? are uniform lattices. This extends previous results known for L 2(R d). We develop berization techniques and suitable range functions adapted to LCA groups needed to provide the desired characterization. © Instytut Matematyczny PAN, 2012. |
| format |
JOUR |
| author |
Cabrelli, C. Paternostro, V. |
| author_facet |
Cabrelli, C. Paternostro, V. |
| author_sort |
Cabrelli, C. |
| title |
Shift-modulation invariant spaces on LCA groups |
| title_short |
Shift-modulation invariant spaces on LCA groups |
| title_full |
Shift-modulation invariant spaces on LCA groups |
| title_fullStr |
Shift-modulation invariant spaces on LCA groups |
| title_full_unstemmed |
Shift-modulation invariant spaces on LCA groups |
| title_sort |
shift-modulation invariant spaces on lca groups |
| url |
http://hdl.handle.net/20.500.12110/paper_00393223_v211_n1_p1_Cabrelli |
| work_keys_str_mv |
AT cabrellic shiftmodulationinvariantspacesonlcagroups AT paternostrov shiftmodulationinvariantspacesonlcagroups |
| _version_ |
1807317486645805056 |