An asymptotic mean value chara cterization for a class of nonlinear parabolic equations related to tug-of-war games
We characterize solutions to the homogeneous parabolic p-Laplace equation ut = |∇u|2-pΔpu = (p - 2)Δ∞u + Δu in terms of an asymptotic mean value property. The results are connected with the analysis of tug-of-war games with noise in which the number of rounds is bounded. The value functions for thes...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00361410_v42_n5_p2058_Manfredi |
Aporte de: |
Sumario: | We characterize solutions to the homogeneous parabolic p-Laplace equation ut = |∇u|2-pΔpu = (p - 2)Δ∞u + Δu in terms of an asymptotic mean value property. The results are connected with the analysis of tug-of-war games with noise in which the number of rounds is bounded. The value functions for these games approximate a solution to the PDE above when the parameter that controls the size of the possible steps goes to zero. Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. |
---|