Total reflection in a uniaxial crystal-uniaxial crystal interface
Considering an interface between two uniaxial birefringent crystals, four reflected and four refracted waves for each incidence direction are obtained. Along this direction can propagate an ordinary wave and an extraordinary wave. Here, we present the analytic expressions for the four critical angle...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00304026_v116_n12_p586_Simon |
Aporte de: |
id |
todo:paper_00304026_v116_n12_p586_Simon |
---|---|
record_format |
dspace |
spelling |
todo:paper_00304026_v116_n12_p586_Simon2023-10-03T14:40:29Z Total reflection in a uniaxial crystal-uniaxial crystal interface Simon, M.C. Bastida, K.B. Gottschalk, K.V. Birefringence Critical angle Total reflection Crystals Light propagation Refraction Critical angles Optical axes Refracted waves Light reflection Considering an interface between two uniaxial birefringent crystals, four reflected and four refracted waves for each incidence direction are obtained. Along this direction can propagate an ordinary wave and an extraordinary wave. Here, we present the analytic expressions for the four critical angles, from which each refracted wave no more exists as propagating wave. We show the variation in these critical angles for different interfaces varying the orientation of the incidence plane with respect to the optical axes. When both principal refractive indices of the second medium are smaller than those of the first medium, then the four critical angles exist for each incidence plane and for any direction of the optical axes. But, when one of the indices has an intermediate value between the values of the indices of the other crystal, we can chose the optical axes directions in such a way that certain critical angles do not exist. Therefore, we can select the refracted wave that is eliminated by total reflection. © 2005 Elsevier GmbH. All rights reserved. Fil:Simon, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Gottschalk, K.V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00304026_v116_n12_p586_Simon |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Birefringence Critical angle Total reflection Crystals Light propagation Refraction Critical angles Optical axes Refracted waves Light reflection |
spellingShingle |
Birefringence Critical angle Total reflection Crystals Light propagation Refraction Critical angles Optical axes Refracted waves Light reflection Simon, M.C. Bastida, K.B. Gottschalk, K.V. Total reflection in a uniaxial crystal-uniaxial crystal interface |
topic_facet |
Birefringence Critical angle Total reflection Crystals Light propagation Refraction Critical angles Optical axes Refracted waves Light reflection |
description |
Considering an interface between two uniaxial birefringent crystals, four reflected and four refracted waves for each incidence direction are obtained. Along this direction can propagate an ordinary wave and an extraordinary wave. Here, we present the analytic expressions for the four critical angles, from which each refracted wave no more exists as propagating wave. We show the variation in these critical angles for different interfaces varying the orientation of the incidence plane with respect to the optical axes. When both principal refractive indices of the second medium are smaller than those of the first medium, then the four critical angles exist for each incidence plane and for any direction of the optical axes. But, when one of the indices has an intermediate value between the values of the indices of the other crystal, we can chose the optical axes directions in such a way that certain critical angles do not exist. Therefore, we can select the refracted wave that is eliminated by total reflection. © 2005 Elsevier GmbH. All rights reserved. |
format |
JOUR |
author |
Simon, M.C. Bastida, K.B. Gottschalk, K.V. |
author_facet |
Simon, M.C. Bastida, K.B. Gottschalk, K.V. |
author_sort |
Simon, M.C. |
title |
Total reflection in a uniaxial crystal-uniaxial crystal interface |
title_short |
Total reflection in a uniaxial crystal-uniaxial crystal interface |
title_full |
Total reflection in a uniaxial crystal-uniaxial crystal interface |
title_fullStr |
Total reflection in a uniaxial crystal-uniaxial crystal interface |
title_full_unstemmed |
Total reflection in a uniaxial crystal-uniaxial crystal interface |
title_sort |
total reflection in a uniaxial crystal-uniaxial crystal interface |
url |
http://hdl.handle.net/20.500.12110/paper_00304026_v116_n12_p586_Simon |
work_keys_str_mv |
AT simonmc totalreflectioninauniaxialcrystaluniaxialcrystalinterface AT bastidakb totalreflectioninauniaxialcrystaluniaxialcrystalinterface AT gottschalkkv totalreflectioninauniaxialcrystaluniaxialcrystalinterface |
_version_ |
1807320580831051776 |