Total reflection in a uniaxial crystal-uniaxial crystal interface

Considering an interface between two uniaxial birefringent crystals, four reflected and four refracted waves for each incidence direction are obtained. Along this direction can propagate an ordinary wave and an extraordinary wave. Here, we present the analytic expressions for the four critical angle...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Simon, M.C., Bastida, K.B., Gottschalk, K.V.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00304026_v116_n12_p586_Simon
Aporte de:
id todo:paper_00304026_v116_n12_p586_Simon
record_format dspace
spelling todo:paper_00304026_v116_n12_p586_Simon2023-10-03T14:40:29Z Total reflection in a uniaxial crystal-uniaxial crystal interface Simon, M.C. Bastida, K.B. Gottschalk, K.V. Birefringence Critical angle Total reflection Crystals Light propagation Refraction Critical angles Optical axes Refracted waves Light reflection Considering an interface between two uniaxial birefringent crystals, four reflected and four refracted waves for each incidence direction are obtained. Along this direction can propagate an ordinary wave and an extraordinary wave. Here, we present the analytic expressions for the four critical angles, from which each refracted wave no more exists as propagating wave. We show the variation in these critical angles for different interfaces varying the orientation of the incidence plane with respect to the optical axes. When both principal refractive indices of the second medium are smaller than those of the first medium, then the four critical angles exist for each incidence plane and for any direction of the optical axes. But, when one of the indices has an intermediate value between the values of the indices of the other crystal, we can chose the optical axes directions in such a way that certain critical angles do not exist. Therefore, we can select the refracted wave that is eliminated by total reflection. © 2005 Elsevier GmbH. All rights reserved. Fil:Simon, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Gottschalk, K.V. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00304026_v116_n12_p586_Simon
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Birefringence
Critical angle
Total reflection
Crystals
Light propagation
Refraction
Critical angles
Optical axes
Refracted waves
Light reflection
spellingShingle Birefringence
Critical angle
Total reflection
Crystals
Light propagation
Refraction
Critical angles
Optical axes
Refracted waves
Light reflection
Simon, M.C.
Bastida, K.B.
Gottschalk, K.V.
Total reflection in a uniaxial crystal-uniaxial crystal interface
topic_facet Birefringence
Critical angle
Total reflection
Crystals
Light propagation
Refraction
Critical angles
Optical axes
Refracted waves
Light reflection
description Considering an interface between two uniaxial birefringent crystals, four reflected and four refracted waves for each incidence direction are obtained. Along this direction can propagate an ordinary wave and an extraordinary wave. Here, we present the analytic expressions for the four critical angles, from which each refracted wave no more exists as propagating wave. We show the variation in these critical angles for different interfaces varying the orientation of the incidence plane with respect to the optical axes. When both principal refractive indices of the second medium are smaller than those of the first medium, then the four critical angles exist for each incidence plane and for any direction of the optical axes. But, when one of the indices has an intermediate value between the values of the indices of the other crystal, we can chose the optical axes directions in such a way that certain critical angles do not exist. Therefore, we can select the refracted wave that is eliminated by total reflection. © 2005 Elsevier GmbH. All rights reserved.
format JOUR
author Simon, M.C.
Bastida, K.B.
Gottschalk, K.V.
author_facet Simon, M.C.
Bastida, K.B.
Gottschalk, K.V.
author_sort Simon, M.C.
title Total reflection in a uniaxial crystal-uniaxial crystal interface
title_short Total reflection in a uniaxial crystal-uniaxial crystal interface
title_full Total reflection in a uniaxial crystal-uniaxial crystal interface
title_fullStr Total reflection in a uniaxial crystal-uniaxial crystal interface
title_full_unstemmed Total reflection in a uniaxial crystal-uniaxial crystal interface
title_sort total reflection in a uniaxial crystal-uniaxial crystal interface
url http://hdl.handle.net/20.500.12110/paper_00304026_v116_n12_p586_Simon
work_keys_str_mv AT simonmc totalreflectioninauniaxialcrystaluniaxialcrystalinterface
AT bastidakb totalreflectioninauniaxialcrystaluniaxialcrystalinterface
AT gottschalkkv totalreflectioninauniaxialcrystaluniaxialcrystalinterface
_version_ 1807320580831051776