Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase
The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear wh...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00278424_v109_n11_p4098_Harris |
Aporte de: |
id |
todo:paper_00278424_v109_n11_p4098_Harris |
---|---|
record_format |
dspace |
spelling |
todo:paper_00278424_v109_n11_p4098_Harris2023-10-03T14:38:06Z Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase Harris, D.M. Corbin, K. Wang, T. Gutierrez, R. Bertolo, A.L. Petti, C. Smilgies, D.-M. Estevez, J.M. Bonetta, D. Urbanowicz, B.R. Ehrhardt, D.W. Somerville, C.R. Rose, J.K.C. Hong, M. DeBolt, S. Cell wall Polysaccharide Quinoxyphen cellulose hemicellulose allelism Arabidopsis article carbon nuclear magnetic resonance cell membrane cell wall crystallization cytoskeleton fiber fibrin polymerization germination IC 50 nonhuman plant growth plant stem point mutation priority journal saccharification X ray diffraction Alleles Amino Acid Sequence Amino Acid Substitution Arabidopsis Arabidopsis Proteins Cell Membrane Cellulose Crystallization Drug Resistance Genes, Dominant Glucosyltransferases Magnetic Resonance Spectroscopy Microfibrils Molecular Sequence Data Mutant Proteins Mutation Protein Transport Quinolines Structure-Activity Relationship Arabidopsis thaliana The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1 A903V and CESA3 T942I in Arabidopsis thaliana. Using 13C solidstate nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1 A903V and CESA3 T942I displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1 A903Vand CESA3 T942I have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00278424_v109_n11_p4098_Harris |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Cell wall Polysaccharide Quinoxyphen cellulose hemicellulose allelism Arabidopsis article carbon nuclear magnetic resonance cell membrane cell wall crystallization cytoskeleton fiber fibrin polymerization germination IC 50 nonhuman plant growth plant stem point mutation priority journal saccharification X ray diffraction Alleles Amino Acid Sequence Amino Acid Substitution Arabidopsis Arabidopsis Proteins Cell Membrane Cellulose Crystallization Drug Resistance Genes, Dominant Glucosyltransferases Magnetic Resonance Spectroscopy Microfibrils Molecular Sequence Data Mutant Proteins Mutation Protein Transport Quinolines Structure-Activity Relationship Arabidopsis thaliana |
spellingShingle |
Cell wall Polysaccharide Quinoxyphen cellulose hemicellulose allelism Arabidopsis article carbon nuclear magnetic resonance cell membrane cell wall crystallization cytoskeleton fiber fibrin polymerization germination IC 50 nonhuman plant growth plant stem point mutation priority journal saccharification X ray diffraction Alleles Amino Acid Sequence Amino Acid Substitution Arabidopsis Arabidopsis Proteins Cell Membrane Cellulose Crystallization Drug Resistance Genes, Dominant Glucosyltransferases Magnetic Resonance Spectroscopy Microfibrils Molecular Sequence Data Mutant Proteins Mutation Protein Transport Quinolines Structure-Activity Relationship Arabidopsis thaliana Harris, D.M. Corbin, K. Wang, T. Gutierrez, R. Bertolo, A.L. Petti, C. Smilgies, D.-M. Estevez, J.M. Bonetta, D. Urbanowicz, B.R. Ehrhardt, D.W. Somerville, C.R. Rose, J.K.C. Hong, M. DeBolt, S. Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase |
topic_facet |
Cell wall Polysaccharide Quinoxyphen cellulose hemicellulose allelism Arabidopsis article carbon nuclear magnetic resonance cell membrane cell wall crystallization cytoskeleton fiber fibrin polymerization germination IC 50 nonhuman plant growth plant stem point mutation priority journal saccharification X ray diffraction Alleles Amino Acid Sequence Amino Acid Substitution Arabidopsis Arabidopsis Proteins Cell Membrane Cellulose Crystallization Drug Resistance Genes, Dominant Glucosyltransferases Magnetic Resonance Spectroscopy Microfibrils Molecular Sequence Data Mutant Proteins Mutation Protein Transport Quinolines Structure-Activity Relationship Arabidopsis thaliana |
description |
The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1 A903V and CESA3 T942I in Arabidopsis thaliana. Using 13C solidstate nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1 A903V and CESA3 T942I displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1 A903Vand CESA3 T942I have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization. |
format |
JOUR |
author |
Harris, D.M. Corbin, K. Wang, T. Gutierrez, R. Bertolo, A.L. Petti, C. Smilgies, D.-M. Estevez, J.M. Bonetta, D. Urbanowicz, B.R. Ehrhardt, D.W. Somerville, C.R. Rose, J.K.C. Hong, M. DeBolt, S. |
author_facet |
Harris, D.M. Corbin, K. Wang, T. Gutierrez, R. Bertolo, A.L. Petti, C. Smilgies, D.-M. Estevez, J.M. Bonetta, D. Urbanowicz, B.R. Ehrhardt, D.W. Somerville, C.R. Rose, J.K.C. Hong, M. DeBolt, S. |
author_sort |
Harris, D.M. |
title |
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase |
title_short |
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase |
title_full |
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase |
title_fullStr |
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase |
title_full_unstemmed |
Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 A903V and CESA3 T942I of cellulose synthase |
title_sort |
cellulose microfibril crystallinity is reduced by mutating c-terminal transmembrane region residues cesa1 a903v and cesa3 t942i of cellulose synthase |
url |
http://hdl.handle.net/20.500.12110/paper_00278424_v109_n11_p4098_Harris |
work_keys_str_mv |
AT harrisdm cellulosemicrofibrilcrystallinityisreducedbymutatingcterminaltransmembraneregionresiduescesa1a903vandcesa3t942iofcellulosesynthase AT corbink cellulosemicrofibrilcrystallinityisreducedbymutatingcterminaltransmembraneregionresiduescesa1a903vandcesa3t942iofcellulosesynthase AT wangt cellulosemicrofibrilcrystallinityisreducedbymutatingcterminaltransmembraneregionresiduescesa1a903vandcesa3t942iofcellulosesynthase AT gutierrezr cellulosemicrofibrilcrystallinityisreducedbymutatingcterminaltransmembraneregionresiduescesa1a903vandcesa3t942iofcellulosesynthase AT bertoloal cellulosemicrofibrilcrystallinityisreducedbymutatingcterminaltransmembraneregionresiduescesa1a903vandcesa3t942iofcellulosesynthase AT pettic cellulosemicrofibrilcrystallinityisreducedbymutatingcterminaltransmembraneregionresiduescesa1a903vandcesa3t942iofcellulosesynthase AT smilgiesdm cellulosemicrofibrilcrystallinityisreducedbymutatingcterminaltransmembraneregionresiduescesa1a903vandcesa3t942iofcellulosesynthase AT estevezjm cellulosemicrofibrilcrystallinityisreducedbymutatingcterminaltransmembraneregionresiduescesa1a903vandcesa3t942iofcellulosesynthase AT bonettad cellulosemicrofibrilcrystallinityisreducedbymutatingcterminaltransmembraneregionresiduescesa1a903vandcesa3t942iofcellulosesynthase AT urbanowiczbr cellulosemicrofibrilcrystallinityisreducedbymutatingcterminaltransmembraneregionresiduescesa1a903vandcesa3t942iofcellulosesynthase AT ehrhardtdw cellulosemicrofibrilcrystallinityisreducedbymutatingcterminaltransmembraneregionresiduescesa1a903vandcesa3t942iofcellulosesynthase AT somervillecr cellulosemicrofibrilcrystallinityisreducedbymutatingcterminaltransmembraneregionresiduescesa1a903vandcesa3t942iofcellulosesynthase AT rosejkc cellulosemicrofibrilcrystallinityisreducedbymutatingcterminaltransmembraneregionresiduescesa1a903vandcesa3t942iofcellulosesynthase AT hongm cellulosemicrofibrilcrystallinityisreducedbymutatingcterminaltransmembraneregionresiduescesa1a903vandcesa3t942iofcellulosesynthase AT debolts cellulosemicrofibrilcrystallinityisreducedbymutatingcterminaltransmembraneregionresiduescesa1a903vandcesa3t942iofcellulosesynthase |
_version_ |
1807317402495483904 |