Lipschitz p-compact mappings
We introduce the notion of Lipschitz p-compact operators. We show that they can be seen as a natural extension of the linear p-compact operators of Sinha and Karn and we transfer some properties of the linear case into the Lipschitz setting. Also, we introduce the notions of Lipschitz-free p-compact...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | INPR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00269255_v_n_p_Achour |
Aporte de: |
id |
todo:paper_00269255_v_n_p_Achour |
---|---|
record_format |
dspace |
spelling |
todo:paper_00269255_v_n_p_Achour2023-10-03T14:37:24Z Lipschitz p-compact mappings Achour, D. Dahia, E. Turco, P. Lipschitz operators Lipschitz p-compact operators Lipschitz-free p-compact mappings Locally p-compact mappings We introduce the notion of Lipschitz p-compact operators. We show that they can be seen as a natural extension of the linear p-compact operators of Sinha and Karn and we transfer some properties of the linear case into the Lipschitz setting. Also, we introduce the notions of Lipschitz-free p-compact operators and Lipschitz locally p-compact operators. We compare all these three notions and show different properties. Finally, we exhibit examples to show that these three notions are different. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature. INPR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00269255_v_n_p_Achour |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Lipschitz operators Lipschitz p-compact operators Lipschitz-free p-compact mappings Locally p-compact mappings |
spellingShingle |
Lipschitz operators Lipschitz p-compact operators Lipschitz-free p-compact mappings Locally p-compact mappings Achour, D. Dahia, E. Turco, P. Lipschitz p-compact mappings |
topic_facet |
Lipschitz operators Lipschitz p-compact operators Lipschitz-free p-compact mappings Locally p-compact mappings |
description |
We introduce the notion of Lipschitz p-compact operators. We show that they can be seen as a natural extension of the linear p-compact operators of Sinha and Karn and we transfer some properties of the linear case into the Lipschitz setting. Also, we introduce the notions of Lipschitz-free p-compact operators and Lipschitz locally p-compact operators. We compare all these three notions and show different properties. Finally, we exhibit examples to show that these three notions are different. © 2019, Springer-Verlag GmbH Austria, part of Springer Nature. |
format |
INPR |
author |
Achour, D. Dahia, E. Turco, P. |
author_facet |
Achour, D. Dahia, E. Turco, P. |
author_sort |
Achour, D. |
title |
Lipschitz p-compact mappings |
title_short |
Lipschitz p-compact mappings |
title_full |
Lipschitz p-compact mappings |
title_fullStr |
Lipschitz p-compact mappings |
title_full_unstemmed |
Lipschitz p-compact mappings |
title_sort |
lipschitz p-compact mappings |
url |
http://hdl.handle.net/20.500.12110/paper_00269255_v_n_p_Achour |
work_keys_str_mv |
AT achourd lipschitzpcompactmappings AT dahiae lipschitzpcompactmappings AT turcop lipschitzpcompactmappings |
_version_ |
1807319226129580032 |