Combinatorics of binomial primary decomposition

An explicit lattice point realization is provided for the primary components of an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a characteristic-free combinatorial description of certain primary components of binomial ideals in affine semigroup rings, namely th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dickenstein, A., Matusevich, L.F., Miller, E.
Formato: JOUR
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00255874_v264_n4_p745_Dickenstein
Aporte de:
id todo:paper_00255874_v264_n4_p745_Dickenstein
record_format dspace
spelling todo:paper_00255874_v264_n4_p745_Dickenstein2023-10-03T14:36:24Z Combinatorics of binomial primary decomposition Dickenstein, A. Matusevich, L.F. Miller, E. An explicit lattice point realization is provided for the primary components of an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a characteristic-free combinatorial description of certain primary components of binomial ideals in affine semigroup rings, namely those that are associated to faces of the semigroup. These results are intimately connected to hypergeometric differential equations in several variables. © Springer-Verlag 2009. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00255874_v264_n4_p745_Dickenstein
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
description An explicit lattice point realization is provided for the primary components of an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a characteristic-free combinatorial description of certain primary components of binomial ideals in affine semigroup rings, namely those that are associated to faces of the semigroup. These results are intimately connected to hypergeometric differential equations in several variables. © Springer-Verlag 2009.
format JOUR
author Dickenstein, A.
Matusevich, L.F.
Miller, E.
spellingShingle Dickenstein, A.
Matusevich, L.F.
Miller, E.
Combinatorics of binomial primary decomposition
author_facet Dickenstein, A.
Matusevich, L.F.
Miller, E.
author_sort Dickenstein, A.
title Combinatorics of binomial primary decomposition
title_short Combinatorics of binomial primary decomposition
title_full Combinatorics of binomial primary decomposition
title_fullStr Combinatorics of binomial primary decomposition
title_full_unstemmed Combinatorics of binomial primary decomposition
title_sort combinatorics of binomial primary decomposition
url http://hdl.handle.net/20.500.12110/paper_00255874_v264_n4_p745_Dickenstein
work_keys_str_mv AT dickensteina combinatoricsofbinomialprimarydecomposition
AT matusevichlf combinatoricsofbinomialprimarydecomposition
AT millere combinatoricsofbinomialprimarydecomposition
_version_ 1807322515406585856