Combinatorics of binomial primary decomposition
An explicit lattice point realization is provided for the primary components of an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a characteristic-free combinatorial description of certain primary components of binomial ideals in affine semigroup rings, namely th...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00255874_v264_n4_p745_Dickenstein |
Aporte de: |
id |
todo:paper_00255874_v264_n4_p745_Dickenstein |
---|---|
record_format |
dspace |
spelling |
todo:paper_00255874_v264_n4_p745_Dickenstein2023-10-03T14:36:24Z Combinatorics of binomial primary decomposition Dickenstein, A. Matusevich, L.F. Miller, E. An explicit lattice point realization is provided for the primary components of an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a characteristic-free combinatorial description of certain primary components of binomial ideals in affine semigroup rings, namely those that are associated to faces of the semigroup. These results are intimately connected to hypergeometric differential equations in several variables. © Springer-Verlag 2009. Fil:Dickenstein, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00255874_v264_n4_p745_Dickenstein |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
description |
An explicit lattice point realization is provided for the primary components of an arbitrary binomial ideal in characteristic zero. This decomposition is derived from a characteristic-free combinatorial description of certain primary components of binomial ideals in affine semigroup rings, namely those that are associated to faces of the semigroup. These results are intimately connected to hypergeometric differential equations in several variables. © Springer-Verlag 2009. |
format |
JOUR |
author |
Dickenstein, A. Matusevich, L.F. Miller, E. |
spellingShingle |
Dickenstein, A. Matusevich, L.F. Miller, E. Combinatorics of binomial primary decomposition |
author_facet |
Dickenstein, A. Matusevich, L.F. Miller, E. |
author_sort |
Dickenstein, A. |
title |
Combinatorics of binomial primary decomposition |
title_short |
Combinatorics of binomial primary decomposition |
title_full |
Combinatorics of binomial primary decomposition |
title_fullStr |
Combinatorics of binomial primary decomposition |
title_full_unstemmed |
Combinatorics of binomial primary decomposition |
title_sort |
combinatorics of binomial primary decomposition |
url |
http://hdl.handle.net/20.500.12110/paper_00255874_v264_n4_p745_Dickenstein |
work_keys_str_mv |
AT dickensteina combinatoricsofbinomialprimarydecomposition AT matusevichlf combinatoricsofbinomialprimarydecomposition AT millere combinatoricsofbinomialprimarydecomposition |
_version_ |
1807322515406585856 |