Electron momentum density and Compton profile by a semi-empirical approach

Here we propose a semi-empirical approach to describe with good accuracy the electron momentum densities and Compton profiles for a wide range of pure crystalline metals. In the present approach, we use an experimental Compton profile to fit an analytical expression for the momentum densities of the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aguiar, J.C., Mitnik, D., Di Rocco, H.O.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00223697_v83_n_p64_Aguiar
Aporte de:
id todo:paper_00223697_v83_n_p64_Aguiar
record_format dspace
spelling todo:paper_00223697_v83_n_p64_Aguiar2023-10-03T14:32:19Z Electron momentum density and Compton profile by a semi-empirical approach Aguiar, J.C. Mitnik, D. Di Rocco, H.O. Approximation Compton profile Electron momentum density Lam-Platzman correction Local density Beryllium Compton scattering Distribution functions Electron gas Electron-electron interactions Ground state Kinetic energy Kinetics Momentum Analytical expressions Approximation Compton profiles Conduction electrons Electron momentum densities Fermi-Dirac distribution function Local density Semi-empirical approach Electrons Here we propose a semi-empirical approach to describe with good accuracy the electron momentum densities and Compton profiles for a wide range of pure crystalline metals. In the present approach, we use an experimental Compton profile to fit an analytical expression for the momentum densities of the valence electrons. This expression is similar to a Fermi-Dirac distribution function with two parameters, one of which coincides with the ground state kinetic energy of the free-electron gas and the other resembles the electron-electron interaction energy. In the proposed scheme conduction electrons are neither completely free nor completely bound to the atomic nucleus. This procedure allows us to include correlation effects. We tested the approach for all metals with Z=3-50 and showed the results for three representative elements: Li, Be and Al from high-resolution experiments. © 2015 Elsevier Ltd. All rights reserved. Fil:Mitnik, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00223697_v83_n_p64_Aguiar
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Approximation
Compton profile
Electron momentum density
Lam-Platzman correction
Local density
Beryllium
Compton scattering
Distribution functions
Electron gas
Electron-electron interactions
Ground state
Kinetic energy
Kinetics
Momentum
Analytical expressions
Approximation
Compton profiles
Conduction electrons
Electron momentum densities
Fermi-Dirac distribution function
Local density
Semi-empirical approach
Electrons
spellingShingle Approximation
Compton profile
Electron momentum density
Lam-Platzman correction
Local density
Beryllium
Compton scattering
Distribution functions
Electron gas
Electron-electron interactions
Ground state
Kinetic energy
Kinetics
Momentum
Analytical expressions
Approximation
Compton profiles
Conduction electrons
Electron momentum densities
Fermi-Dirac distribution function
Local density
Semi-empirical approach
Electrons
Aguiar, J.C.
Mitnik, D.
Di Rocco, H.O.
Electron momentum density and Compton profile by a semi-empirical approach
topic_facet Approximation
Compton profile
Electron momentum density
Lam-Platzman correction
Local density
Beryllium
Compton scattering
Distribution functions
Electron gas
Electron-electron interactions
Ground state
Kinetic energy
Kinetics
Momentum
Analytical expressions
Approximation
Compton profiles
Conduction electrons
Electron momentum densities
Fermi-Dirac distribution function
Local density
Semi-empirical approach
Electrons
description Here we propose a semi-empirical approach to describe with good accuracy the electron momentum densities and Compton profiles for a wide range of pure crystalline metals. In the present approach, we use an experimental Compton profile to fit an analytical expression for the momentum densities of the valence electrons. This expression is similar to a Fermi-Dirac distribution function with two parameters, one of which coincides with the ground state kinetic energy of the free-electron gas and the other resembles the electron-electron interaction energy. In the proposed scheme conduction electrons are neither completely free nor completely bound to the atomic nucleus. This procedure allows us to include correlation effects. We tested the approach for all metals with Z=3-50 and showed the results for three representative elements: Li, Be and Al from high-resolution experiments. © 2015 Elsevier Ltd. All rights reserved.
format JOUR
author Aguiar, J.C.
Mitnik, D.
Di Rocco, H.O.
author_facet Aguiar, J.C.
Mitnik, D.
Di Rocco, H.O.
author_sort Aguiar, J.C.
title Electron momentum density and Compton profile by a semi-empirical approach
title_short Electron momentum density and Compton profile by a semi-empirical approach
title_full Electron momentum density and Compton profile by a semi-empirical approach
title_fullStr Electron momentum density and Compton profile by a semi-empirical approach
title_full_unstemmed Electron momentum density and Compton profile by a semi-empirical approach
title_sort electron momentum density and compton profile by a semi-empirical approach
url http://hdl.handle.net/20.500.12110/paper_00223697_v83_n_p64_Aguiar
work_keys_str_mv AT aguiarjc electronmomentumdensityandcomptonprofilebyasemiempiricalapproach
AT mitnikd electronmomentumdensityandcomptonprofilebyasemiempiricalapproach
AT diroccoho electronmomentumdensityandcomptonprofilebyasemiempiricalapproach
_version_ 1807324114049826816