Hydrogen diffusion and trapping in nanocrystalline tungsten

The hydrogen behavior in nanocrystalline W (ncW) samples with grain size of 5 and 10 nm is studied using Molecular Dynamics (MD) with a bond order potential (BOP) for the W-H system. The dependence of the hydrogen diffusion coefficient on grain size (5 and 10 nm) and hydrogen concentration (0.1 at.%...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Piaggi, P.M., Bringa, E.M., Pasianot, R.C., Gordillo, N., Panizo-Laiz, M., Del Río, J., Gómez De Castro, C., Gonzalez-Arrabal, R.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00223115_v458_n_p233_Piaggi
Aporte de:
id todo:paper_00223115_v458_n_p233_Piaggi
record_format dspace
spelling todo:paper_00223115_v458_n_p233_Piaggi2023-10-03T14:31:04Z Hydrogen diffusion and trapping in nanocrystalline tungsten Piaggi, P.M. Bringa, E.M. Pasianot, R.C. Gordillo, N. Panizo-Laiz, M. Del Río, J. Gómez De Castro, C. Gonzalez-Arrabal, R. Grain boundaries Grain size and shape Hydrogen Molecular dynamics Nanocrystalline materials Nanocrystals Bond-order potential Hydrogen behavior Hydrogen concentration Hydrogen diffusion Hydrogen diffusion coefficients Nanocrystallines Trapping energy Vacancy trapping Diffusion The hydrogen behavior in nanocrystalline W (ncW) samples with grain size of 5 and 10 nm is studied using Molecular Dynamics (MD) with a bond order potential (BOP) for the W-H system. The dependence of the hydrogen diffusion coefficient on grain size (5 and 10 nm) and hydrogen concentration (0.1 at.% < [H] < 10.0 at.%) is calculated. These data show that in all cases the hydrogen diffusion coefficient is lower for ncW than for coarse-grained samples. Trapping energies of grain boundaries are estimated and a broad distribution roughly centered at the vacancy trapping energy is found. Hydrogen diffusion results are interpreted within the trapping model by Kirchheim for nanocrystalline materials. The H-H interaction is evaluated and the possible formation of H2 is disregarded for the conditions in these simulations. Hydrogen segregation and trapping in grain boundaries for ncW is discussed, including extrapolations for micron-sized polycrystals. © 2014 Elsevier B.V. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00223115_v458_n_p233_Piaggi
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Grain boundaries
Grain size and shape
Hydrogen
Molecular dynamics
Nanocrystalline materials
Nanocrystals
Bond-order potential
Hydrogen behavior
Hydrogen concentration
Hydrogen diffusion
Hydrogen diffusion coefficients
Nanocrystallines
Trapping energy
Vacancy trapping
Diffusion
spellingShingle Grain boundaries
Grain size and shape
Hydrogen
Molecular dynamics
Nanocrystalline materials
Nanocrystals
Bond-order potential
Hydrogen behavior
Hydrogen concentration
Hydrogen diffusion
Hydrogen diffusion coefficients
Nanocrystallines
Trapping energy
Vacancy trapping
Diffusion
Piaggi, P.M.
Bringa, E.M.
Pasianot, R.C.
Gordillo, N.
Panizo-Laiz, M.
Del Río, J.
Gómez De Castro, C.
Gonzalez-Arrabal, R.
Hydrogen diffusion and trapping in nanocrystalline tungsten
topic_facet Grain boundaries
Grain size and shape
Hydrogen
Molecular dynamics
Nanocrystalline materials
Nanocrystals
Bond-order potential
Hydrogen behavior
Hydrogen concentration
Hydrogen diffusion
Hydrogen diffusion coefficients
Nanocrystallines
Trapping energy
Vacancy trapping
Diffusion
description The hydrogen behavior in nanocrystalline W (ncW) samples with grain size of 5 and 10 nm is studied using Molecular Dynamics (MD) with a bond order potential (BOP) for the W-H system. The dependence of the hydrogen diffusion coefficient on grain size (5 and 10 nm) and hydrogen concentration (0.1 at.% < [H] < 10.0 at.%) is calculated. These data show that in all cases the hydrogen diffusion coefficient is lower for ncW than for coarse-grained samples. Trapping energies of grain boundaries are estimated and a broad distribution roughly centered at the vacancy trapping energy is found. Hydrogen diffusion results are interpreted within the trapping model by Kirchheim for nanocrystalline materials. The H-H interaction is evaluated and the possible formation of H2 is disregarded for the conditions in these simulations. Hydrogen segregation and trapping in grain boundaries for ncW is discussed, including extrapolations for micron-sized polycrystals. © 2014 Elsevier B.V. All rights reserved.
format JOUR
author Piaggi, P.M.
Bringa, E.M.
Pasianot, R.C.
Gordillo, N.
Panizo-Laiz, M.
Del Río, J.
Gómez De Castro, C.
Gonzalez-Arrabal, R.
author_facet Piaggi, P.M.
Bringa, E.M.
Pasianot, R.C.
Gordillo, N.
Panizo-Laiz, M.
Del Río, J.
Gómez De Castro, C.
Gonzalez-Arrabal, R.
author_sort Piaggi, P.M.
title Hydrogen diffusion and trapping in nanocrystalline tungsten
title_short Hydrogen diffusion and trapping in nanocrystalline tungsten
title_full Hydrogen diffusion and trapping in nanocrystalline tungsten
title_fullStr Hydrogen diffusion and trapping in nanocrystalline tungsten
title_full_unstemmed Hydrogen diffusion and trapping in nanocrystalline tungsten
title_sort hydrogen diffusion and trapping in nanocrystalline tungsten
url http://hdl.handle.net/20.500.12110/paper_00223115_v458_n_p233_Piaggi
work_keys_str_mv AT piaggipm hydrogendiffusionandtrappinginnanocrystallinetungsten
AT bringaem hydrogendiffusionandtrappinginnanocrystallinetungsten
AT pasianotrc hydrogendiffusionandtrappinginnanocrystallinetungsten
AT gordillon hydrogendiffusionandtrappinginnanocrystallinetungsten
AT panizolaizm hydrogendiffusionandtrappinginnanocrystallinetungsten
AT delrioj hydrogendiffusionandtrappinginnanocrystallinetungsten
AT gomezdecastroc hydrogendiffusionandtrappinginnanocrystallinetungsten
AT gonzalezarrabalr hydrogendiffusionandtrappinginnanocrystallinetungsten
_version_ 1807318454528638976