On the interpolation space (Lp(Ω),W1,p(Ω))s,p in non-smooth domains

We show that, for certain non-smooth bounded domains Ω⊂Rn, the real interpolation space (Lp(Ω),W1,p(Ω))s,p is the subspace W˜s,p(Ω)⊂Lp(Ω) induced by the restricted fractional seminorm |f|W˜s,p(Ω)=(∫Ω∫|x−y|<%[Formula presented]dydx)[Formula presented]. © 2018 Elsevier Inc.

Guardado en:
Detalles Bibliográficos
Autores principales: Drelichman, I., Durán, R.G.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v470_n1_p91_Drelichman
Aporte de:
id todo:paper_0022247X_v470_n1_p91_Drelichman
record_format dspace
spelling todo:paper_0022247X_v470_n1_p91_Drelichman2023-10-03T14:29:25Z On the interpolation space (Lp(Ω),W1,p(Ω))s,p in non-smooth domains Drelichman, I. Durán, R.G. Fractional Sobolev spaces Irregular domains John domains Real interpolation Uniform domains We show that, for certain non-smooth bounded domains Ω⊂Rn, the real interpolation space (Lp(Ω),W1,p(Ω))s,p is the subspace W˜s,p(Ω)⊂Lp(Ω) induced by the restricted fractional seminorm |f|W˜s,p(Ω)=(∫Ω∫|x−y|<%[Formula presented]dydx)[Formula presented]. © 2018 Elsevier Inc. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0022247X_v470_n1_p91_Drelichman
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Fractional Sobolev spaces
Irregular domains
John domains
Real interpolation
Uniform domains
spellingShingle Fractional Sobolev spaces
Irregular domains
John domains
Real interpolation
Uniform domains
Drelichman, I.
Durán, R.G.
On the interpolation space (Lp(Ω),W1,p(Ω))s,p in non-smooth domains
topic_facet Fractional Sobolev spaces
Irregular domains
John domains
Real interpolation
Uniform domains
description We show that, for certain non-smooth bounded domains Ω⊂Rn, the real interpolation space (Lp(Ω),W1,p(Ω))s,p is the subspace W˜s,p(Ω)⊂Lp(Ω) induced by the restricted fractional seminorm |f|W˜s,p(Ω)=(∫Ω∫|x−y|<%[Formula presented]dydx)[Formula presented]. © 2018 Elsevier Inc.
format JOUR
author Drelichman, I.
Durán, R.G.
author_facet Drelichman, I.
Durán, R.G.
author_sort Drelichman, I.
title On the interpolation space (Lp(Ω),W1,p(Ω))s,p in non-smooth domains
title_short On the interpolation space (Lp(Ω),W1,p(Ω))s,p in non-smooth domains
title_full On the interpolation space (Lp(Ω),W1,p(Ω))s,p in non-smooth domains
title_fullStr On the interpolation space (Lp(Ω),W1,p(Ω))s,p in non-smooth domains
title_full_unstemmed On the interpolation space (Lp(Ω),W1,p(Ω))s,p in non-smooth domains
title_sort on the interpolation space (lp(ω),w1,p(ω))s,p in non-smooth domains
url http://hdl.handle.net/20.500.12110/paper_0022247X_v470_n1_p91_Drelichman
work_keys_str_mv AT drelichmani ontheinterpolationspacelpōw1pōspinnonsmoothdomains
AT duranrg ontheinterpolationspacelpōw1pōspinnonsmoothdomains
_version_ 1807316195957800960