Orbits of non-elliptic disc automorphisms on H p
Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H 2 generated by the limit points in the H 2 norm of the orbit of a thin Blaschke product B under composition operators C φ induced by non-elliptic automorphisms. This description exhibits a surprising connection...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | JOUR |
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v388_n2_p1013_GallardoGutierrez |
| Aporte de: |
| id |
todo:paper_0022247X_v388_n2_p1013_GallardoGutierrez |
|---|---|
| record_format |
dspace |
| spelling |
todo:paper_0022247X_v388_n2_p1013_GallardoGutierrez2023-10-03T14:29:17Z Orbits of non-elliptic disc automorphisms on H p Gallardo-Gutiérrez, E.A. Gorkin, P. Suárez, D. Blaschke products Eigenfunctions of composition operators Invariant subspaces Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H 2 generated by the limit points in the H 2 norm of the orbit of a thin Blaschke product B under composition operators C φ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the C φ-eigenfunctions in H p for 1≤p≤∞. © 2011 Elsevier Inc. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0022247X_v388_n2_p1013_GallardoGutierrez |
| institution |
Universidad de Buenos Aires |
| institution_str |
I-28 |
| repository_str |
R-134 |
| collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
| topic |
Blaschke products Eigenfunctions of composition operators Invariant subspaces |
| spellingShingle |
Blaschke products Eigenfunctions of composition operators Invariant subspaces Gallardo-Gutiérrez, E.A. Gorkin, P. Suárez, D. Orbits of non-elliptic disc automorphisms on H p |
| topic_facet |
Blaschke products Eigenfunctions of composition operators Invariant subspaces |
| description |
Motivated by the Invariant Subspace Problem, we describe explicitly the closed subspace H 2 generated by the limit points in the H 2 norm of the orbit of a thin Blaschke product B under composition operators C φ induced by non-elliptic automorphisms. This description exhibits a surprising connection to model spaces. Finally, we give a constructive characterization of the C φ-eigenfunctions in H p for 1≤p≤∞. © 2011 Elsevier Inc. |
| format |
JOUR |
| author |
Gallardo-Gutiérrez, E.A. Gorkin, P. Suárez, D. |
| author_facet |
Gallardo-Gutiérrez, E.A. Gorkin, P. Suárez, D. |
| author_sort |
Gallardo-Gutiérrez, E.A. |
| title |
Orbits of non-elliptic disc automorphisms on H p |
| title_short |
Orbits of non-elliptic disc automorphisms on H p |
| title_full |
Orbits of non-elliptic disc automorphisms on H p |
| title_fullStr |
Orbits of non-elliptic disc automorphisms on H p |
| title_full_unstemmed |
Orbits of non-elliptic disc automorphisms on H p |
| title_sort |
orbits of non-elliptic disc automorphisms on h p |
| url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v388_n2_p1013_GallardoGutierrez |
| work_keys_str_mv |
AT gallardogutierrezea orbitsofnonellipticdiscautomorphismsonhp AT gorkinp orbitsofnonellipticdiscautomorphismsonhp AT suarezd orbitsofnonellipticdiscautomorphismsonhp |
| _version_ |
1807315192027021312 |