Improved Poincaré inequalities with weights

In this paper we prove that if Ω ∈ Rn is a bounded John domain, the following weighted Poincaré-type inequality holds:under(inf, a ∈ R) {norm of matrix} f (x) - a {norm of matrix}Lq (Ω, w1) ≤ C {norm of matrix} ∇ f (x) d (x)α {norm of matrix}Lp (Ω, w2) where f is a locally Lipschitz function on Ω, d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Drelichman, I., Durán, R.G.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p286_Drelichman
Aporte de:
id todo:paper_0022247X_v347_n1_p286_Drelichman
record_format dspace
spelling todo:paper_0022247X_v347_n1_p286_Drelichman2023-10-03T14:29:13Z Improved Poincaré inequalities with weights Drelichman, I. Durán, R.G. John domains Reverse doubling weights Weighted Poincaré inequality Weighted Sobolev inequality In this paper we prove that if Ω ∈ Rn is a bounded John domain, the following weighted Poincaré-type inequality holds:under(inf, a ∈ R) {norm of matrix} f (x) - a {norm of matrix}Lq (Ω, w1) ≤ C {norm of matrix} ∇ f (x) d (x)α {norm of matrix}Lp (Ω, w2) where f is a locally Lipschitz function on Ω, d (x) denotes the distance of x to the boundary of Ω, the weights w1, w2 satisfy certain cube conditions, and α ∈ [0, 1] depends on p, q and n. This result generalizes previously known weighted inequalities, which can also be obtained with our approach. © 2008 Elsevier Inc. All rights reserved. Fil:Drelichman, I. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Durán, R.G. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p286_Drelichman
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic John domains
Reverse doubling weights
Weighted Poincaré inequality
Weighted Sobolev inequality
spellingShingle John domains
Reverse doubling weights
Weighted Poincaré inequality
Weighted Sobolev inequality
Drelichman, I.
Durán, R.G.
Improved Poincaré inequalities with weights
topic_facet John domains
Reverse doubling weights
Weighted Poincaré inequality
Weighted Sobolev inequality
description In this paper we prove that if Ω ∈ Rn is a bounded John domain, the following weighted Poincaré-type inequality holds:under(inf, a ∈ R) {norm of matrix} f (x) - a {norm of matrix}Lq (Ω, w1) ≤ C {norm of matrix} ∇ f (x) d (x)α {norm of matrix}Lp (Ω, w2) where f is a locally Lipschitz function on Ω, d (x) denotes the distance of x to the boundary of Ω, the weights w1, w2 satisfy certain cube conditions, and α ∈ [0, 1] depends on p, q and n. This result generalizes previously known weighted inequalities, which can also be obtained with our approach. © 2008 Elsevier Inc. All rights reserved.
format JOUR
author Drelichman, I.
Durán, R.G.
author_facet Drelichman, I.
Durán, R.G.
author_sort Drelichman, I.
title Improved Poincaré inequalities with weights
title_short Improved Poincaré inequalities with weights
title_full Improved Poincaré inequalities with weights
title_fullStr Improved Poincaré inequalities with weights
title_full_unstemmed Improved Poincaré inequalities with weights
title_sort improved poincaré inequalities with weights
url http://hdl.handle.net/20.500.12110/paper_0022247X_v347_n1_p286_Drelichman
work_keys_str_mv AT drelichmani improvedpoincareinequalitieswithweights
AT duranrg improvedpoincareinequalitieswithweights
_version_ 1807319224874434560