A fixed point operator for a nonlinear boundary value problem
We study a semilinear second order equation with a nonlinear boundary condition for the axial deformation of a nonlinear elastic beam in the presence of friction. Under appropriate conditions we define a fixed point operator in order to obtain solutions for this equation. ©c 2002 Elsevier Science.
Guardado en:
Autores principales: | , |
---|---|
Formato: | JOUR |
Materias: | |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_0022247X_v266_n1_p160_Amster |
Aporte de: |
id |
todo:paper_0022247X_v266_n1_p160_Amster |
---|---|
record_format |
dspace |
spelling |
todo:paper_0022247X_v266_n1_p160_Amster2023-10-03T14:29:06Z A fixed point operator for a nonlinear boundary value problem Amster, P. Mariani, M.C. Fixed point methods Nonlinear BVP We study a semilinear second order equation with a nonlinear boundary condition for the axial deformation of a nonlinear elastic beam in the presence of friction. Under appropriate conditions we define a fixed point operator in order to obtain solutions for this equation. ©c 2002 Elsevier Science. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0022247X_v266_n1_p160_Amster |
institution |
Universidad de Buenos Aires |
institution_str |
I-28 |
repository_str |
R-134 |
collection |
Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA) |
topic |
Fixed point methods Nonlinear BVP |
spellingShingle |
Fixed point methods Nonlinear BVP Amster, P. Mariani, M.C. A fixed point operator for a nonlinear boundary value problem |
topic_facet |
Fixed point methods Nonlinear BVP |
description |
We study a semilinear second order equation with a nonlinear boundary condition for the axial deformation of a nonlinear elastic beam in the presence of friction. Under appropriate conditions we define a fixed point operator in order to obtain solutions for this equation. ©c 2002 Elsevier Science. |
format |
JOUR |
author |
Amster, P. Mariani, M.C. |
author_facet |
Amster, P. Mariani, M.C. |
author_sort |
Amster, P. |
title |
A fixed point operator for a nonlinear boundary value problem |
title_short |
A fixed point operator for a nonlinear boundary value problem |
title_full |
A fixed point operator for a nonlinear boundary value problem |
title_fullStr |
A fixed point operator for a nonlinear boundary value problem |
title_full_unstemmed |
A fixed point operator for a nonlinear boundary value problem |
title_sort |
fixed point operator for a nonlinear boundary value problem |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v266_n1_p160_Amster |
work_keys_str_mv |
AT amsterp afixedpointoperatorforanonlinearboundaryvalueproblem AT marianimc afixedpointoperatorforanonlinearboundaryvalueproblem AT amsterp fixedpointoperatorforanonlinearboundaryvalueproblem AT marianimc fixedpointoperatorforanonlinearboundaryvalueproblem |
_version_ |
1807323816220688384 |