A fixed point operator for a nonlinear boundary value problem

We study a semilinear second order equation with a nonlinear boundary condition for the axial deformation of a nonlinear elastic beam in the presence of friction. Under appropriate conditions we define a fixed point operator in order to obtain solutions for this equation. ©c 2002 Elsevier Science.

Guardado en:
Detalles Bibliográficos
Autores principales: Amster, P., Mariani, M.C.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_0022247X_v266_n1_p160_Amster
Aporte de:
id todo:paper_0022247X_v266_n1_p160_Amster
record_format dspace
spelling todo:paper_0022247X_v266_n1_p160_Amster2023-10-03T14:29:06Z A fixed point operator for a nonlinear boundary value problem Amster, P. Mariani, M.C. Fixed point methods Nonlinear BVP We study a semilinear second order equation with a nonlinear boundary condition for the axial deformation of a nonlinear elastic beam in the presence of friction. Under appropriate conditions we define a fixed point operator in order to obtain solutions for this equation. ©c 2002 Elsevier Science. Fil:Amster, P. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Mariani, M.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_0022247X_v266_n1_p160_Amster
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Fixed point methods
Nonlinear BVP
spellingShingle Fixed point methods
Nonlinear BVP
Amster, P.
Mariani, M.C.
A fixed point operator for a nonlinear boundary value problem
topic_facet Fixed point methods
Nonlinear BVP
description We study a semilinear second order equation with a nonlinear boundary condition for the axial deformation of a nonlinear elastic beam in the presence of friction. Under appropriate conditions we define a fixed point operator in order to obtain solutions for this equation. ©c 2002 Elsevier Science.
format JOUR
author Amster, P.
Mariani, M.C.
author_facet Amster, P.
Mariani, M.C.
author_sort Amster, P.
title A fixed point operator for a nonlinear boundary value problem
title_short A fixed point operator for a nonlinear boundary value problem
title_full A fixed point operator for a nonlinear boundary value problem
title_fullStr A fixed point operator for a nonlinear boundary value problem
title_full_unstemmed A fixed point operator for a nonlinear boundary value problem
title_sort fixed point operator for a nonlinear boundary value problem
url http://hdl.handle.net/20.500.12110/paper_0022247X_v266_n1_p160_Amster
work_keys_str_mv AT amsterp afixedpointoperatorforanonlinearboundaryvalueproblem
AT marianimc afixedpointoperatorforanonlinearboundaryvalueproblem
AT amsterp fixedpointoperatorforanonlinearboundaryvalueproblem
AT marianimc fixedpointoperatorforanonlinearboundaryvalueproblem
_version_ 1807323816220688384