Iterative actions of normal operators

Let A be a normal operator in a Hilbert space H, and let G⊂H be a countable set of vectors. We investigate the relations between A, G and L that make the system of iterations {Ang:g∈G,0≤n<L(g)} complete, Bessel, a basis, or a frame for H. The problem is motivated by the dynamical sampling pro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aldroubi, A., Cabrelli, C., Çakmak, A.F., Molter, U., Petrosyan, A.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00221236_v272_n3_p1121_Aldroubi
Aporte de:
id todo:paper_00221236_v272_n3_p1121_Aldroubi
record_format dspace
spelling todo:paper_00221236_v272_n3_p1121_Aldroubi2023-10-03T14:27:18Z Iterative actions of normal operators Aldroubi, A. Cabrelli, C. Çakmak, A.F. Molter, U. Petrosyan, A. Dynamics Frames Sampling Let A be a normal operator in a Hilbert space H, and let G⊂H be a countable set of vectors. We investigate the relations between A, G and L that make the system of iterations {Ang:g∈G,0≤n<L(g)} complete, Bessel, a basis, or a frame for H. The problem is motivated by the dynamical sampling problem and is connected to several topics in functional analysis, including, frame theory and spectral theory. It also has relations to topics in applied harmonic analysis including, wavelet theory and time-frequency analysis. © 2016 Elsevier Inc. Fil:Cabrelli, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Molter, U. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00221236_v272_n3_p1121_Aldroubi
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Dynamics
Frames
Sampling
spellingShingle Dynamics
Frames
Sampling
Aldroubi, A.
Cabrelli, C.
Çakmak, A.F.
Molter, U.
Petrosyan, A.
Iterative actions of normal operators
topic_facet Dynamics
Frames
Sampling
description Let A be a normal operator in a Hilbert space H, and let G⊂H be a countable set of vectors. We investigate the relations between A, G and L that make the system of iterations {Ang:g∈G,0≤n<L(g)} complete, Bessel, a basis, or a frame for H. The problem is motivated by the dynamical sampling problem and is connected to several topics in functional analysis, including, frame theory and spectral theory. It also has relations to topics in applied harmonic analysis including, wavelet theory and time-frequency analysis. © 2016 Elsevier Inc.
format JOUR
author Aldroubi, A.
Cabrelli, C.
Çakmak, A.F.
Molter, U.
Petrosyan, A.
author_facet Aldroubi, A.
Cabrelli, C.
Çakmak, A.F.
Molter, U.
Petrosyan, A.
author_sort Aldroubi, A.
title Iterative actions of normal operators
title_short Iterative actions of normal operators
title_full Iterative actions of normal operators
title_fullStr Iterative actions of normal operators
title_full_unstemmed Iterative actions of normal operators
title_sort iterative actions of normal operators
url http://hdl.handle.net/20.500.12110/paper_00221236_v272_n3_p1121_Aldroubi
work_keys_str_mv AT aldroubia iterativeactionsofnormaloperators
AT cabrellic iterativeactionsofnormaloperators
AT cakmakaf iterativeactionsofnormaloperators
AT molteru iterativeactionsofnormaloperators
AT petrosyana iterativeactionsofnormaloperators
_version_ 1807315860977614848