A geometric characterization of nuclearity and injectivity
Let R(A, N) be the space of bounded non-degenerate representations π: A → N, where A is a nuclear C*-algebra and N an injective von Neumann algebra with separable predual. We prove that R(A, N) is an homogeneous reductive space under the action of the group GN, of invertible elements of N, and also...
Guardado en:
Autores principales: | Andruchow, E., Corach, G., Stojanoff, D. |
---|---|
Formato: | JOUR |
Acceso en línea: | http://hdl.handle.net/20.500.12110/paper_00221236_v133_n2_p474_Andruchow |
Aporte de: |
Ejemplares similares
-
A geometric characterization of nuclearity and injectivity
Publicado: (1995) -
Geometrical significance of the löwner-heinz inequality
por: Andruchow, E., et al. -
Morphometric and geometric characterization of normal faults on Mars
por: Vaz, D.A., et al. -
On geometric characterizations for Monge-Ampère doubling measures
por: Forzani, L., et al.
Publicado: (2002) -
On geometric characterizations for Monge-Ampère doubling measures
por: Forzani, L., et al.