Superfast quenching

We study positive solutions of a fast diffusion equation in a bounded interval with a nonlinear Neumann boundary condition, Formulas are presented. where m< 0. Every positive solution quenches in a finite time. We prove that the quenching rate is not always the natural one given by homogeneity, b...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ferreira, R., de Pablo, A., Quirós, F., Rossi, J.D.
Formato: JOUR
Materias:
Acceso en línea:http://hdl.handle.net/20.500.12110/paper_00220396_v199_n1_p189_Ferreira
Aporte de:
id todo:paper_00220396_v199_n1_p189_Ferreira
record_format dspace
spelling todo:paper_00220396_v199_n1_p189_Ferreira2023-10-03T14:25:31Z Superfast quenching Ferreira, R. de Pablo, A. Quirós, F. Rossi, J.D. Asymptotic behaviour Fast diffusion equation Nonlinear boundary conditions Quenching We study positive solutions of a fast diffusion equation in a bounded interval with a nonlinear Neumann boundary condition, Formulas are presented. where m< 0. Every positive solution quenches in a finite time. We prove that the quenching rate is not always the natural one given by homogeneity, but sometimes faster. We also study the quenching set, the asymptotic behaviour close to the quenching time and the possible continuation after that. © 2004 Elsevier Inc. All rights reserved. JOUR info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar http://hdl.handle.net/20.500.12110/paper_00220396_v199_n1_p189_Ferreira
institution Universidad de Buenos Aires
institution_str I-28
repository_str R-134
collection Biblioteca Digital - Facultad de Ciencias Exactas y Naturales (UBA)
topic Asymptotic behaviour
Fast diffusion equation
Nonlinear boundary conditions
Quenching
spellingShingle Asymptotic behaviour
Fast diffusion equation
Nonlinear boundary conditions
Quenching
Ferreira, R.
de Pablo, A.
Quirós, F.
Rossi, J.D.
Superfast quenching
topic_facet Asymptotic behaviour
Fast diffusion equation
Nonlinear boundary conditions
Quenching
description We study positive solutions of a fast diffusion equation in a bounded interval with a nonlinear Neumann boundary condition, Formulas are presented. where m< 0. Every positive solution quenches in a finite time. We prove that the quenching rate is not always the natural one given by homogeneity, but sometimes faster. We also study the quenching set, the asymptotic behaviour close to the quenching time and the possible continuation after that. © 2004 Elsevier Inc. All rights reserved.
format JOUR
author Ferreira, R.
de Pablo, A.
Quirós, F.
Rossi, J.D.
author_facet Ferreira, R.
de Pablo, A.
Quirós, F.
Rossi, J.D.
author_sort Ferreira, R.
title Superfast quenching
title_short Superfast quenching
title_full Superfast quenching
title_fullStr Superfast quenching
title_full_unstemmed Superfast quenching
title_sort superfast quenching
url http://hdl.handle.net/20.500.12110/paper_00220396_v199_n1_p189_Ferreira
work_keys_str_mv AT ferreirar superfastquenching
AT depabloa superfastquenching
AT quirosf superfastquenching
AT rossijd superfastquenching
_version_ 1807316124528803840